

SOUTH NATION CONSERVATION DE LA NATION SUD

Water Budget/Balance

www.nation.on.ca

A little about me...

PURPOSE of a Water Budget (Balance)

- The purpose of the water budget analysis is to reasonably estimate the current water components (Hydrology/Hydrogeology) and relationships (inputs, outputs, diversions) and to then determine how much will change as a result of the proposed development.
- Impacts (Negative or Positive)
- Presenting the Data (Communication)

PURPOSE of a Water Budget (Balance)

 Maintain quantity/quality of surface water and groundwater contributions that ensures the pre-development hydroperiod (seasonal pattern of water level fluctuation) of the wetland <u>(important features)</u> is protected. TRCA

PURPOSE of a Water Budget (Balance)

Water Budget (Cycle)

ocean

anspiration

Water Budget (Balance) Equation

Mathematically, the water budget can be expressed as follows:

 $P = RO + AET + I + D + A \pm \Delta I \pm \Delta s \pm \Delta g$

Where;

- P = precipitation
- RO = surface runoff
- AET = actual evapotranspiration

I = interflow

- D = groundwater discharge
- A = anthropogenic inputs (septic systems) and/or supplies/abstractions
- ΔI = change in land surface storage
- Δs = change in soil moisture storage
- Δg = change in groundwater storage

Major Components

• Precipitation

[1] • ET

- Surplus
- Runoff
- Infiltration
- ETC. (NEED TO EVALUATE THE SITE)

Water Budget (Surplus Hydroperiod)

General Steps

- Determine the need for a water balance
- Establish baseline (data collection)
- Develop existing conditions
 - Soils, topography
 - Determine (infiltration vs runoff), ETC
- Compare Pre and Post development water conditions
- Identify mitigation measures
- Reporting

Critical Thinking

Critical Thinking

Critical Thinking

- Pre vs Post
- THIS IS NOT A STORM WATER FACILITY DESIGN EXERCISE

Water Budget (Balance) Example

Michael Melaney, P. Eng

TABLE 1 CLIMATIC WATER BUDGET: CLIMATE NORMAL 1971-2000 (TORONTO LESTER B. PEARSON INT'L AIRPORT Potential Evapotranspiration TRILLIUM HEALTH CENTRE

Month	Thornthwaite (1948)										
	Mean Temperature (°C)	Heat Index	Potential Evapo- transpiration (mm)	Daylight Correction Value	Adjusted Potential Evapo- transpiration (mm)	Total Precipitation (mm)	Surplus (mm)	Deficit (mm)			
January	-6.3	0.0	0.0	0.81	0.0	52.2	52.2	0.0			
February	-5.4	0.0	0.0	0.81	0.0	42.6	42.6	0.0			
March	-0.4	0.0	0.0	1.02	0.0	57.1	57.1	0.0			
April	6.3	1.4	28.4	1.12	31.8	68.4	36.6	0.0			
May	12.9	4.2	61.8	1.27	78.5	72.5	0.0	6.0			
June	17.8	6.8	87.7	1.29	113.1	74.2	0.0	38.9			
July	20.8	8.7	103.8	1.30	134.9	74.4	0.0	60.5			
August	19.9	8.1	98.9	1.20	118.7	79.6	0.0	39.1			
September	15.3	5.4	74.4	1.04	77.4	77.5	0.1	0.0			
October	8.9	2.4	41.3	0.95	39.3	64.1	24.8	0.0			
November	3.2	0.5	13.6	0.80	10.9	69.3	58.4	0.0			
December	-2.9	0.0	0.0	0.74	0.0	60.9	60.9	0.0			
TOTALS		37.5			604.6	792.8	332.8	144.6			

Water Budget (Balance) Example

TABLE 3 WATER BUDGET, POST-DEVELOPMENT WATER BALANCE/ WATER BUDGET ASSESSMENT

WATER BUDGET SUMMARY WATER BALANCE/ WATER BUDGET ASSESSMENT

17 			Site			
Characteristic	Pre- Development	Pre- Post- Change Post- elopment Development (Pre- to Post-) With Mitigatio		Post- Development with Mitigation	Change (Pre- to Post- with Mitigation	
		Inputs (Volumes)			
Precipition (m ³ /yr)	10,829	10,829	0.0%	10,829	0.0%	
Run-On (m ³ /yr)	0	0	0.0%	0	0.0%	
Other Inputs (m ³ /yr)	0	0	0.0%	0	0.0%	
Total Inputs (m³/yr)	10,829	10,829	0.0%	10 9	0.0%	
	0	Outputs (Volume	s)			
Precipitation Surplus (m ³ /yr)	6,772	7,048	4.1%	7.8	4.1%	
Net Surplus (m ³ /yr)	6,772	7,048	4.1%	7, 8	4.1%	
Evapotranspiration (m ³ /yr)	4,057	3,781	-6.8%	3.	-6.8%	
Infiltration (m ³ /yr)	278	237	-14.7%		-14.7%	
Rooftop Infiltration (m ³ /yr)	0	0	0.0%		0.0%	
Total Infiltration (m ³ /yr)	278	237	-14.7%	274	-1.5%	
Runoff Pervious Areas (m ³ /yr)	517	441	-14.7%	441	-14.7%	
Runoff Impervious Areas (m ³ /yr)	5,977	6,370	6.6%	6,333	6.0%	
Total Runoff (m ³ /yr)	6,494	6,811	4.9%	6,774	4.3%	
Total Outputs (m ³ /yr)	10,829	10,829	0.0%	10,829	0.0%	

- Highlight the Difference
- Need to be critical thinkers (hydroperiod)

- Change in Balance
 - Positive
 - Negative

Water Balance Outputs

- WHY Care
- Save the world

Water Balance (Erosion)

• Erosion

Water Balance (flooding)

• Nuisance Flooding (Grading) water diversion

Water Balance (Wetlands)

• Too Much or too little

• Wells (Specific)

- Depends on the Balance (Implications of Stormwater Design)
- Increase infiltration (LID)
- Water Diversion (Outlet locations)

Figure 2: Conventional site design Courtesy PGDER Figure 3: LID site design Courtesy PGDER

Our Local Environment, We're in it Together.

SOUTH NATION CONSERVATION DE LA NATION SUD

www.nation.on.ca