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1.	 Executive Summary

Public and private sector leaders need information about regional climate trends 
in order to adapt for the future. 

There is increasing evidence around the world that the frequency and severity of severe 
weather is on the rise. In Canada, the recent spike in extreme weather-related events has 
resulted in social and economic consequences for individuals, governments, and home and 
business insurers around the country. Yet little research has been undertaken to investigate 
historical and projected changes in weather trends in this country at the regional level. 

The purpose of this report is to provide a greater 
understanding, based on the best available peer-
reviewed science, about how weather patterns have 
changed in the past and how they are expected to 
change in the future. In doing so, the report aims to 
provide decision makers with the information they 
need to better adapt public and private infrastructure 
to the realities of the changing climate, while allowing 
home and business insurers to plan for future claims 
scenarios. 

This report has been prepared by Professor 
Gordon McBean and colleagues at the Institute for 
Catastrophic Loss Reduction (ICLR). It is mainly 

based on internationally reviewed climate science as summarized by the Intergovernmental 
Panel on Climate Change (IPCC). Canada-specific information has been added based on 
Environment Canada publications, reviewed articles and a special report prepared by James 
P. Bruce commissioned by ICLR (Climate Change Information for Adaptation). Regional 
projections are provided within specific ranges due to the varying availability of reliable 
historical weather data and the challenges associated with projecting future changes in 
weather at the local level.

Canada’s climate is changing.

This analysis reveals that the warming of the world’s climate system is unequivocal based 
on observed increases in global average air and ocean temperatures. The year 2010 ranked, 
together with 2005 and 1998, as the warmest on record. 

Adaptation 

Adaptation refers to initiatives 
and measures to reduce the 
vulnerability of natural and 
human systems against actual or 
expected climate change effects. 
Various types of adaptation 
exist (e.g., anticipatory and 
reactive, private and public, and 
autonomous and planned).
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In Canada, on average, temperatures warmed by more than 1.3°C between 1948 and 2007, a 
rate of warming that was about twice the global average. The national average temperature 
for the year 2010 was 3.0°C above normal, which makes it the warmest year on record since 
nationwide records began in 1948. Canada has also become wetter during the past half 
century, with mean precipitation across the country increasing by about 12%. On average, 
Canada now experiences 20 more days of rain compared with the 1950s. These changes to the 
climate are likely responsible, at least in part, for the rising frequency and severity of extreme 
weather events in Canada, such as floods, storms and droughts, because warmer temperatures 
tend to produce more violent weather patterns.

These weather trends are already affecting Canadians. 

People around the world, including Canadians, are already seeing the impact of severe 
weather in terms of lost lives and injuries, families displaced from their homes, and towns that 
are devastated. The personal and social costs of these losses are incalculable.

Insurers have seen first-hand the financial impacts of severe weather, as insured losses from 
natural catastrophes have ranged between $10B and $50B a year internationally over the 
past decade. In Canada, catastrophic events cost roughly $1.6B in 2011 and almost $1B in 
each of the two previous years. The majority of these insured losses were caused by extreme 
weather events, but Canada’s home and business insurers are also seeing an increase in claims 
resulting from smaller weather events that nevertheless result in significant property damage 
for consumers. These losses are driven in part by Canada’s aging sewer infrastructure, which 
is often incapable of handling the new, higher levels of precipitation, while the fact that 
homeowners are investing more in costly basement upgrades also has an impact on claims. 
As a result, water claims have now surpassed fire as the number one cause of home insurance 
losses in many parts of the country. 

The climate will continue to change, with varying impacts across Canada’s regions. 

The earth is projected to warm by another 1.5°C by 2050. This change in the climate is 
expected to have varying impacts on temperature, precipitation and extreme weather trends 
throughout Canada, depending on the region of the country and the season. 

By 2050, northern Canada is expected to warm the greatest amount during the winter, while 
southwestern Canada is likely to warm the most during the summer. Over this same period, 
seasonal average precipitation is projected to decline over parts of western and Atlantic 
Canada in the summer, while average precipitation is likely to increase over all of Canada in 
the winter. Region-specific information on the projected weather trends is provided in the 
Regional Syntheses section of this report. 
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Severe weather is projected to increase over the next 40 years. 

Future trends in the frequency and severity of extreme weather will have a significant impact 
on the ability of individuals, governments and insurance companies to prepare for future 
catastrophic events. This is a concern given that the IPCC has concluded that it is very likely 
that extreme weather such as hot extremes, heat waves and heavy precipitation events will 
become more frequent over the next 50 years. 

The frequency with which Canada experiences events such as heavy rainfall of a given 
intensity (known as the return period), is projected to increase such that an event that 
occurred on average once every 50 years will be likely to occur about once every 35 years by 
2050. Even in regions of the country where average rainfall is projected to decrease in the 
summer, the frequency at which severe precipitation events occur is expected to increase over 
the next 40 years. 

Changes to Canada’s climate will also have implications for climate effects other than 
changing precipitation patterns. The occurrence of forest fire activity is projected to increase 
by 25% by 2030, with major regional variations as certain parts of the country become hotter 
and drier than others. Recent observations have led to projections of global mean sea level 
rises of 1 metre or more over the next century, with tangible impacts for Canada’s coastal 
regions. Where information is available, this report also provides projected changes to severe 
wind/thunderstorms, hail, and freezing rain events. 

Canada must adapt to this new reality. 

These historical and projected trends point to the need for Canada to adapt its existing 
infrastructure now in order to minimize the social and economic costs associated with severe 
weather. Given the real threat of climate change, governments, communities, and individual 
home and business owners can use the information contained within this report to help make 
targeted decisions about how to adapt existing public and private impacts to manage the risks 
associated with these events.
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2.	I ntroduction

Globally and in Canada, there is increasing evidence that the climate is changing. Every day, 
international news outlets publish stories about the impact of extreme weather around the 
world – from floods in Bangkok to drought in Sudan. In Canada, a recent spike in severe 
weather-related events – including severe rainstorms, tornadoes, flooding and forest fires – 
has resulted in social and economic consequences for individuals and governments across the 
country. As a result of these trends, water losses have now surpassed fire as the number one 
cause of home insurance claims in many parts of the country. 

This increase in severe weather has raised questions among the public, governments and 
insurers about regional changes to the climate: How have weather patterns changed over the 
past 40 years, and how are they expected to change in the future? Little research has yet been 
undertaken to investigate regional changes in severe weather patterns and projected changes. 

The purpose of this report is to tell the story of regional-specific changes in the frequency, 
severity and duration of weather events across Canada. This report focuses on both the 
observed trends in climate and severe weather over the past 30 to 50 years and projected 
trends for the next 40 years, until 2050. The goal is to provide consumers and governments 
with information to help them better adapt public and private infrastructure to the realities 
of the changing climate, while allowing home and business insurers to plan for future claims 
scenarios. 
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3.	M ethodology

This report is based on internationally reviewed climate science, generally as summarized 
by the Intergovernmental Panel on Climate Change (see IPCC description in box) and 
specifically its Fourth Assessment Report presented to governments in 20071 and its 2012 
special report on climate extremes.2 Since the IPCC produces global assessments, specific 
information on Canada and its regional variations has been added from publications of 
Environment Canada, reviewed scientific articles and a special report prepared by James 
P. Bruce3 and commissioned by the Institute for Catastrophic Loss Reduction (ICLR).4 A 
narrative summary for each of the seven regions across Canada is provided below in the 
Regional Syntheses section.

IPCC

The Intergovernmental Panel on Climate Change (IPCC) was established by the United Nations 
Environment Program (UNEP) in 1988 and is responsible for assessing and compiling the most 
recent and best scientific research on climate change. The IPCC is considered the world authority 
on climate change information and periodically releases comprehensive change reports, which 
are used as the basis for climate change policy making worldwide. In 2007, the IPCC was jointly 
awarded the Nobel Peace Prize with Al Gore “for their efforts to build up and disseminate greater 
knowledge about man-made climate change, and to lay the foundations for the measures that are 
needed to counteract such change.” 

Confidence

The level of confidence in the correctness of a result is expressed in the 2007 IPCC report, using  
a standard terminology defined as follows:

TERMINOLOGY DEGREE OF CONFIDENCE IN BEING CORRECT

Very high confidence At least 9 out of 10 chance of being correct

High confidence About 8 out of 10 chance

Medium confidence About 5 out of 10 chance

Low confidence About 2 out of 10 chance

Very low confidence Less than 1 out of 10 chance
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The rate of global climate warming for the next 25 years is projected to be approximately 
0.2°C per decade under all scenarios. This rate of change is approximately the same as the 
observed global warming rate for the past 25 years of 0.18°C per decade, and is due to the 
slow response of the climate system to rising greenhouse gas concentrations. Through to 2050, 
the differences among the most likely scenarios of greenhouse gas emissions remain small, 
although the rate of global warming is projected to increase slightly as the accumulating 
emissions have more effect. There is a scientific basis for extrapolating potential changes 
in climate from past records where there is appropriate quality data – including changes to 
specific climate parameters, such as rainfall and sea level rise. 

There are challenges with any approach that aims to provide specific projections of smaller-
scale climate changes. These include limited past observations of relatively rare occurrences of 
extreme events, non-linearities in the climate system and the limited ability of climate models 
to provide small-scale details, due to their necessarily global nature. The sources of data and 
other information, as well as any specific limitations, are identified throughout this report. 
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4.	 Climate Change 

4.1	 Scientific background

Climate is a complex phenomenon with many facets and variations in both space and time. 
What is happening in one place may or may not be an indicator of what is happening in 
another. Similarly, last year’s or month’s climate may not be an indicator of the next. Current 
understanding of this complex climate system is based on centuries of scientific study, and 
the time scales of the climate system are important for understanding projected changes to 
the climate. The atmosphere adjusts quickly to changes, but the oceans respond very slowly, 
on a time scale of decades. These phenomena influence the response time and magnitude of 
change in the climate system as a whole when it is disturbed. Climate and climate change refer 
to changes averaged over decades, not year-to-year variations. For the purposes of this report, 
“normal” climate is defined as that over a 30-year period.

Climate 

Climate in a narrow sense is usually defined as the average weather, or more rigorously, as the 
statistical description in terms of the mean and variability of relevant quantities over a period of 
time ranging from months to thousands or millions of years. The classical period for averaging 
these variables is 30 years, as defined by the World Meteorological Organization. The relevant 
quantities are most often surface variables such as temperature, precipitation and wind. Climate in 
a wider sense is the state of the climate system, including a statistical description. 

Atmosphere

This is the gaseous envelope surrounding the Earth. The dry atmosphere consists almost entirely of 
nitrogen (78.1% of the volume) and oxygen (20.9%), together with a number of trace gases, such 
as argon (0.93%), helium and radiatively active greenhouse gases such as carbon dioxide (0.039%, 
which corresponds to 390 parts per million) and ozone. In addition, the atmosphere contains 
greenhouse gas water vapour, whose amounts are highly variable but typically present around 1% 
of volume. The maximum amount of water vapour that the atmosphere can hold, corresponding 
to 100% relative humidity, depends strongly on its temperature – warm air can hold more water 
vapour. The atmosphere also contains clouds (water in its liquid phase) and aerosols.

Weather

Weather includes short-term changes in the atmosphere, and can change over very short periods 
of time. Weather can change from minute to minute, day to day and month to month.
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4.2	 How is the climate changing globally?

The knowledge about climate change comes from careful analysis of literally thousands of 
observations from across the globe over decades, coupled with knowledge of how the climate 
system works. Figure 1 shows the global average temperatures since the mid-1800s to 2005. 
Over the last 100 years, the best linear fit to the data shows a warming of 0.074°C per decade. 
Around 1940, the globe was relatively warm, compared to this trend, and then cooled relative 
to the previous decades in the 1950s and 1960s due to a period of active volcanic eruptions.

Figure 1.   Annual global mean temperatures (black dots) with linear fits to the data. The left-hand axis shows 
temperature anomalies relative to the 1961 to 1990 average and the right-hand axis shows estimated actual 
temperatures, both in °C. Linear trends are shown for the last 25 (yellow), 50 (orange), 100 (magenta) and 150 
(red) years. The smooth blue curve shows decadal variations with the decadal 90% error range shown as a pale 
blue band about that line. The total temperature increase from the period 1850 to 1899 to the period 2001 to 
2005 is 0.76°C ± 0.19°C. The numbers in red show the linear trends in °C per decade for the past 50 years (0.13) 
and last 25 years (0.18).6 

Climate change

(a) �The Intergovernmental Panel on Climate Change (IPCC) defines climate change as “a change in 
the state of the climate that can be identified (e.g., by using statistical tests) by changes in the 
mean and/or the variability of its properties, and that persists for an extended period, typically 
decades or longer. Climate change may be due to natural internal processes or external forcings 
or to persistent anthropogenic changes in the composition of the atmosphere or in land use.”

(b) �The United Nations Framework Convention on Climate Change (UNFCCC) defines climate 
change as “a change of climate which is attributed directly or indirectly to human activity that 
alters the composition of the global atmosphere and which is in addition to natural climate 
variability observed over comparable time periods.”
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Over the past 50 years, the trend is higher than it was during the past 100 years, doubling to 
0.13°C per decade, and for the last 25 years of the record, mean temperature rose by 0.18°C 
per decade. Note also that the trend is much more consistent when averaged over a few years, 
and the most recent rate of warming approaches being three times higher than over the 
century as a whole. 

Based on this and other analyses, the IPCC in its 2007 full assessment concluded that the 
“warming of the climate system is unequivocal, as is now evident from observations of increases 
in global average air and ocean temperatures, widespread melting of snow and ice, and rising 
global average sea level.”7

The warming has not stopped. The World Meteorological Organization confirmed the Earth’s 
significant long-term warming trend in noting that “2010 ranked as the warmest year on 
record, together with 2005 and 1998”... “The ten warmest years on record have all occurred since 
1998. Over the ten years from 2001 to 2010, global temperatures have averaged 0.46°C above the 
1961–1990 average, and are the highest ever recorded for a ten-year period since the beginning  
of instrumental climate records.”8 But the rate of warming is not uniform over the globe 
(Figure 2). The Arctic is warming most rapidly, with northern land areas warming more than 
the tropics, and oceanic areas generally warming the least.

Figure 2.  Patterns of linear global temperature trends from 1979 to 2005 estimated at the surface in °C per decade.  
Grey areas indicate incomplete data. 9
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4.3	 How is the climate changing in Canada?

Over the period from 1948 to 2010, Canada warmed at an average rate of 0.24°C per decade, 
about twice the global average.10 For the far north, the rate was up to three times faster. Over 
the past 25 years, the rate of change has approximately doubled (Figure 3 top). The winters 
are warming more than the summers although there is large variability from year to year and 
within a given year (Figure 3 bottom).

Figure 3.   
Annual temperatures 
averaged over Canada,  
as departures from  
1951–1980 average,  
from 1948 to 2010 (top).  
Seasonal mean 
temperatures from 1990  
to 2010 (bottom).11 

The national average temperature for the year 2010 was 3.0°C above normal, which makes it 
the warmest year on record since nationwide records began in 1948 (Figure 3 top and Figure 
4 top). All of the country experienced above normal temperatures in 2010, with most of 
Nunavut and northern Quebec at least 4°C above normal.12 
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Variations in precipitation are much larger than those for temperature; in addition, there are 
inconsistencies in the data across the country and over time. In 2010, for example, there were 
significant variations in precipitation across the country (Figure 4 bottom). The variations in 
the extremes in temperature and precipitation, and some other variables, are discussed below 
in the Regional Syntheses section.

Figure 4.  Spatial variations average in 
temperature (top) and precipitation 
(bottom) changes for 2010,  
as departures from 1951–1980 average.13

Nevertheless, it is clear that Canada has, on average, become wetter during the past half 
century, with mean precipitation across the country increasing by about 12%.14 Annually 
averaged, the largest percentage increase in precipitation has occurred in the high Arctic, 
while parts of southern Canada, and particularly the Prairies, have seen little change or a 
decline. These trends have led to more transpiration, resulting in decreases in stream flows in 
southern Canada by about 8%.15 
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5.	� Weather/Climate-Related Hazards and Disasters  
and Their Impacts Around the World

The United Nations International Strategy 
for Disaster Reduction defines a hazard 
as a “potentially damaging physical event, 
phenomenon and/or human activity that 
may cause the loss of life or injury, property 
damage, social and economic disruption 
or environmental degradation.”16 Thus, a 
windstorm, flood or hot day may be defined 
as a hazard. A major impact occurs when 
the hazard affects an exposed and vulnerable 
community, structure and person, where 
vulnerability depends on the physical, social, 
economic and environmental factors or 
processes that together make the affected 
entity vulnerable. 

Averaged over the past 10 years, there have 
been 785 natural catastrophes in the world 
per year. In 2010, there were a total of 950 
natural catastrophes, nine-tenths of which 
were weather-related events such as storms 
and floods.17 Munich Re defines a great 
natural catastrophe as any one or more of 
the following four situations: (1) number 
of fatalities exceeds 2,000; (2) number of 

homeless exceeds 200,000; (3) the country’s Gross Domestic Product (GDP) is severely hit; 
and/or (4) the country is dependent on international aid.18 As shown in Figure 5, over the past 
25 years there has been an upward trend in the number of great natural catastrophes, with 
meteorological and hydrological events being the main drivers.

Climate change is likely responsible, at least in part, for the rising frequency and severity of 
extreme weather events, such as floods, storms and droughts, since warmer temperatures tend 
to produce more violent weather patterns.19 As a result, weather events that used to happen 
once every 40 years are now happening once every six years in some regions in the country.20 

M. Wahlström, the UN Assistant Secretary-General for Disaster Risk Reduction, stated in 
2008, “Over the last two decades (1988–2007), 76% of all disaster events were hydrological, 
meteorological or climatological in nature; these accounted for 45% of the deaths and 79% of the 
economic losses caused by natural hazards. The real tragedy is that many of these deaths can be 
avoided.”21 In this context, “hydrological, meteorological or climatological” events are climate 

Exposure 

Exposure refers to the people, property, 
systems or other elements present in 
hazard zones that are thereby subject to 
potential losses.

Vulnerability

Vulnerability is the degree to which a 
system is susceptible to, and unable to 
cope with, adverse effects of climate 
change, including climate variability and 
extremes. Vulnerability is a function of the 
character, magnitude and rate of climate 
change and variation to which a system 
is exposed, its sensitivity and its adaptive 
capacity.

For example, a flooded river, per se, is not a 
disaster. However, a disaster occurs when 
a flood interacts with a vulnerable system, 
such as an exposed community located in 
a flood plain. 
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Figure 5.  The number of “great” and “devastating” natural catastrophes (as defined by Munich Re) since 1980,  
indicated by type of event. 

and weather and related events (heat waves, freezes, wildland fires, drought, tropical storms, 
winter storms, severe weather, hail, tornado and local storms, flash floods, river floods, storm 
surges and mass movements/landslides).

Citizens rely on the property and casualty insurance industry to help carry the costs of 
property damage resulting from severe weather-related events. Over the past decade, global 
insured losses from natural catastrophes ranged between $10B and $50B a year.22 Relative to 
climate risk and its disclosure by insurers, S. Leurig notes in a Ceres report, “This changing 
climate will profoundly alter insurers’ business landscape, affecting the industry’s ability to  
price physical perils, creating potentially vast new liabilities and threatening the performance  
of insurers’ vast investment portfolios.”23

Extreme weather event 

An extreme weather event is an event that is rare at a particular place and time of year. Definitions 
of “rare” vary, but an extreme weather event would normally have less than a 1 in 10 chance of 
occurring. By definition, the characteristics of what is called extreme weather may vary from place 
to place in an absolute sense. Single extreme events cannot be simply and directly attributed to 
anthropogenic climate change, as there is always a finite chance the event in question might have 
occurred naturally. When a pattern of extreme weather persists for some time, such as a season, it 
may be classed as an extreme climate event, especially if it yields an average or total that is itself 
extreme (e.g., drought or heavy rainfall over a season).
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6.	� Weather/Climate-Related Hazards and Disasters 
 and Their Impacts in Canada

Within Canada, recent trends have seen an increase in property insurance claims resulting 
from catastrophic weather-related events. Catastrophic events over the past three years have 
cost roughly $1B a year. Most of these insured losses were caused by extreme weather events. 

In 2010 and 2011, storms in both summer and winter resulted in major claims for Insurance 
Bureau of Canada’s (IBC’s) member companies. For example:

	 •  �On June 5 to 6, 2010, the southern Ontario town of Leamington and surrounding 
areas experienced a wind and thunderstorm event that resulted in estimated insured 
losses of $120M to both residential and commercial properties.24

	 •  �From July 12 to 13, 2010, Calgary and other areas in southern Alberta were 
pummelled with a brutal thunderstorm in which homes, businesses and automobiles 
were damaged, resulting in estimated insured losses of $500M.25

	 •  �On September 20 to 21, 2010, strong winds and sewer backup from Hurricane Igor 
resulted in an estimated $70M in insured damage to Newfoundland and Labrador 
homes and businesses.26

	 •  �Over the month of December 2010, it is estimated that IBC’s member companies 
paid a total of $50.7M in home, business and auto claims as a result of winter storms 
throughout Atlantic Canada.27

	 •  �In 2011, after a cool spring, much of Canada was under oppressive heat for most 
of the summer, with new record temperatures set in many locations. While arson 
is suspected to be the cause of the May forest fires in Slave Lake, Alberta, high 
temperatures may have contributed to the spread of the fire, which resulted in 
approximately $700M in insured losses. 

	 •  �On August 21, 2011, an F3 tornado struck Goderich, Ontario, killing one, injuring 
37 and costing insurers an estimated $110M in insured losses.28

	 •  �Between August 28 and 30, 2011, flooding and windstorms from Hurricane Irene 
resulted in insured losses estimated at approximately $130M in New Brunswick, 
Ontario and Quebec.29
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Canada’s home and business insurers are also seeing an increase in claims resulting from 
weather-related events that fall below the threshold for the definition of “catastrophe,” but 
nevertheless result in significant property damage for consumers. For example, on March 5, 
2011, Ontario and Quebec saw record rainfall. In the aftermath, Crawford & Company claims 
adjusters saw a 300% increase in claims volume for branches and local contractors.30

Infrastructure failure is linked to much of the damage caused to homes and businesses by 
these severe weather events.31 A significant long-term deficit in infrastructure improvement 
has left sanitary/surface water systems vulnerable as, in some areas of the country, the 
storm and sanitary sewer infrastructure is simply unable to handle the increasing levels of 
precipitation.
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7.	 Why Is the Climate Changing?

There are many reasons why the climate can change, including variations in the Earth’s orbit 
around the sun, which has been the principal cause of the ice ages of the past. Volcanic 
eruptions can cause short-term cooling of the climate, usually lasting a few years. Impact 
by asteroids from outer space can also change the climate. Within the climate system, there 
are variations, such as changes in ocean temperature, that can alter the climate for years or 
decades. The concern now is that human activities are aggravating changes to the natural 
greenhouse effect, which is a phenomenon that for the last 10,000 years or more has warmed 
our climate by about 33°C, allowing human life to develop as it has. 

The most important greenhouse gas is water vapour. 
The water content of the atmosphere is almost at 
capacity most of the time. If more water is added, 
it precipitates out. However, if the climate warms, 
the atmosphere can hold more water vapour, which 
increases the greenhouse effect, causing more 
warming; this is called a positive feedback effect. 
Carbon dioxide, the next most important greenhouse 
gas, is now less than 0.04% of the atmosphere. Carbon 
dioxide on Earth has, on average, a lifetime in the 
atmosphere of about 100 years (range: 50–200 years), 
with the oceans largely determining the amount and 
lifetime through their uptake, storage and release of 
carbon dioxide. Methane, the third most important 
gas, has a lifetime of about 10 years in the Earth’s 
atmosphere. Because it takes only a few years for a 
greenhouse gas to mix around the globe, emissions in 
one location affect the global climate. 

For most of the past 10,000 years, the atmospheric carbon dioxide concentration was about 
280 parts per million (ppm) by volume. Human-generated greenhouse gases (mainly carbon 
dioxide and, to a lesser extent, methane) really started as land was cleared for agriculture, 
followed by urban development and industrialization, and the use of fossil fuels (coals, oil, 
gas) for energy beginning in the 1800s. The atmospheric concentration passed 300 ppm in 
1900, reached about 325 ppm by the mid-1950s, and is now about 390 ppm. Atmospheric 
methane concentrations have more than doubled in the last 100 years. These additional 
greenhouse gases cause the climate to warm at a greater rate as it adjusts to the additional 
energy being retained. Because of the time it takes for the oceans to heat up, the atmospheric 
climate is always lagging behind the increased greenhouse concentrations. Global carbon 

Greenhouse gases

Greenhouse gases are those 
gaseous constituents of the 
atmosphere, both natural and 
anthropogenic, that absorb 
and emit radiation at specific 
wavelengths within the spectrum 
of thermal infrared radiation 
emitted by the Earth’s surface, 
the atmosphere itself, and by 
clouds. This property causes the 
greenhouse effect (IPCC definition).

The main greenhouse gases are 
water vapour, carbon dioxide, 
nitrous oxide, methane and ozone. 
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dioxide emissions, mainly from use of fossil fuels, are increasing now more rapidly than 
before: For the period 1990–1999, the average year-to-year increase was 0.9%. For the period 
2000–2007, the rate of growth increased almost four fold to 3.5%. 

Based on a careful analysis of climate of the past few decades and consideration of all possible 
causes for the changes, the IPCC (2007) concluded that “Most of the observed increase in 
global average temperatures since the mid-20th century is very likely due to the observed increase 
in anthropogenic (man-made) greenhouse gas concentrations.”32 Variations in the sun and other 
“natural” occurrences do not explain the warming over the past few decades.
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8.	 Projecting the Future

Section 4, Climate Change, described the past climate, and Section 7, Why is the Climate 
Changing?, described and explained the changes over the past 50 years. This section presents 
estimates for the future based on future emissions scenarios and projections from the 
historical trends. Plausible future emissions scenarios depend on future development of the 
activities that affect atmospheric concentrations of greenhouse gases (e.g., population growth, 
production, consumption of fossil-fuel-based energy and government policies to reduce the 
net emissions of greenhouse gases into the atmosphere). A range of such emissions scenarios 
was prepared by the Intergovernmental Panel on Climate Change and has been used in its 
reports to project future climate change. 

Emissions scenarios

An emissions scenario is a plausible representation of the future development of emissions of 
substances that are potentially radiatively active (e.g., greenhouse gases, aerosols), based on a 
coherent and internally consistent set of assumptions about driving forces (such as demographic 
and socio-economic development, technological change) and their key relationships. Four 
emissions scenario “family storylines” set out distinct directions for global development through the 
year 2100. The storylines and associated population, GDP and emissions scenarios – associated with 
the Special Report on Emissions Scenarios (SRES) – were developed by the IPCC to assist in climate 
change projections. Illustrations and key themes of the four family storylines are provided below.

A1: �Rapid, globalized economic development; global population rising and peaking mid-century 
and subsequently declining; rapid introduction of new and more efficient technologies. Key 
themes: global, economic development. A commonly used variation on this scenario, called 
A1B, incorporates more aggressive assumptions with respect to the growth utilization of non-
fossil fuels.

A2: �Slower, regionally oriented economic development; continuously growing global population; 
slower per capita economic growth and technological change than in the other storylines. Key 
themes: regional, economic development.

B1: �Same population scenario as in A1, but with a rapid shift toward service and information 
economies; reduced material consumption complimented with introduction of clean and 
resource efficient technologies; global emphasis on solutions to economic, social and 
environmental sustainability. Key themes: global, sustainable development.

B2: �Continually increasing population, at a lower rate than A2; less rapid economic and 
technological development than in A1 and B1; emphasis on regional/local solutions to 
economic, social and environmental sustainability. Key themes: regional, sustainable 
development.
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This report uses the IPCC scenarios described in the box above, coupled with historical 
trends, to discuss future climate projections for each of seasonal average temperatures, 
seasonal average precipitation, extreme events and other relevant climatic parameters. To 
the extent possible, scenario A2 is used as the basis for the projections, insofar as it appears 
to be the most realistic, in view of recent emissions increases and the lack of progress in 
negotiations to reduce the drivers of climate change. 

The primary focus of the projections in this report is on the period to 2050, or the next 40 
years of climate. Note that for some indicators, adjustments have had to be made to the 
available scientific analyses in order to fit within this time frame. The starting point for 
projections is 2010. 

8.1	 Projections of seasonal average temperatures

For the next two decades, a global warming rate of at least 0.2°C per decade is projected, 
regardless of the scenario, due to the slow response of the climate system. In fact, even if the 
concentrations of all greenhouse gases and aerosols are assumed to remain constant at year 
2000 levels, a further warming of about 0.1°C per decade would be expected.33 For the A2 
scenario, the globe is projected to be 1.5°C warmer in 2050 and 3.8°C in 2100, with a 2000–
2050 warming rate of 0.3°C per decade. 

The changes in temperature and other climate 
variables will not be uniform over the globe and 
will also change by season. The broad geographical 
patterns of change will be similar to those observed 
over the past several decades, with the warming 
greatest over land and at most high northern 
latitudes, and least over the Southern Ocean and  
parts of the North Atlantic Ocean. 

With the warming, there will be a general shift 
poleward in the mean climate isotherms (lines of the 
same temperature in full degrees Celsius), and by 
2050, these isotherms will move about half the way 
northward toward the next northerly isotherm. This 
means that mid-latitude westerly weather flows will 
be displaced northward and strengthen, this being 
most pronounced in the autumn and winter. For 
most of Canada, the winters will warm more than summers, a trend that has already been 
happening. In the summer, southern Canada will generally warm more than the north, due  
to the cooling influence of the open waters of the Arctic regions. At this time of year, the 
largest warming will be centred in the U.S. west, extending north into southwestern Canada. 
In the winter, the opposite is true – northern Canada will warm more than the southern parts 
of the country.

Climate isotherms 

Isotherms refer to boundary lines 
placed on a map to delineate 
between geographic areas that 
share average yearly temperatures. 
Climate isotherms provide the 
same function as contour lines on 
an elevation map. A poleward shift 
in mean climate isotherms means 
that northerly areas will experience 
warmer average temperatures that 
are normally associated with more 
southerly areas.
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8.2	 Projections of seasonal average precipitation

The IPCC also stated that “Increases in the amount of precipitation are very likely in high-
latitudes, while decreases are likely in most subtropical land regions (by as much as about 20%  
in the A1B scenario in 2100...), continuing the observed patterns in recent trends.”34 

In the summer, there will be reductions in average precipitation in southwestern Canada and 
about the same in eastern Canada. In the winter, average precipitation will increase over all 
of Canada but more of it will fall as rain than snow. As a result of the warming, there will be 
changes in snow cover (Figure 6) such that over much of Canada the March snow cover will 
decrease by mid-century by over 50%. In the far north, the snow cover will increase due to the 
increased precipitation with warmer, but not above freezing, conditions.

 

Figure 6.  Percent changes in snow depth in March for 
mid-century (averaged over the period 2041 to 2070) 
under IPCC A2 emissions scenario, compared to the 
1961 to 1990 period. The calculation is only done where 
climatological snow amounts exceed 5 mm of water 
equivalent. From IPCC.35 

There will be more frost-free days as the winter shortens and the summer lengthens. 
Approximately half of the extensive permafrost regions in northern Canada are projected to 
disappear eventually with climate warming. Many areas of now permanent permafrost will 
shift to discontinuous permafrost.36 These changes, along with increases in the number of 
freeze-thaw cycles, will have major impacts on roads, bridges and other infrastructure in the 
north, including the northern parts of many provinces.
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8.3	 Projections of changes in extreme events

Although changes in mean temperature are important, the changes in extremes are more 
important in consideration of severe events. The IPCC 2012 special report on climate 
extremes notes, “A changing climate leads to changes in the frequency, intensity, spatial extent, 
duration, and timing of extreme weather and climate events, and can result in unprecedented 
extreme weather and climate events.”37 The possibility of “unprecedented” extreme events 
is important in terms of strategies for risk reduction. The report also concluded that “The 
severity of the impacts of climate extremes depends strongly on the level of the exposure and 
vulnerability to these extremes” and that “Extreme and non-extreme weather or climate events 
affect vulnerability to future extreme events, by modifying resilience, coping capacity, and 
adaptive capacity.” 

With respect to extremes, note that even if there is no change in distribution of variations 
around the mean, the frequency of occurrence of values above a set threshold increases 
(Figure 7).

Figure 7.  Schematic showing the effect on extreme temperatures when the mean temperature increases, for a 
normal temperature distribution. From IPCC.38

Based on scientific analysis of climate model projections, the IPCC assessed the likelihood 
of future trends in climate extremes (see Table 1) and concluded that “It is very likely that hot 
extremes, heat waves and heavy precipitation events will become more frequent.”39
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PHENOMENON AND 
DIRECTION OF TREND

LIKELIHOOD THAT TREND 
OCCURRED IN 20TH CENTURY 

(TYPICALLY POST-1960)

LIKELIHOOD OF FUTURE 
TREND FOR 21ST CENTURY 
BASED ON PROJECTIONS 
USING IPCC SCENARIOS

Warmer and fewer cold 
days and nights over most 
land areas

Very likely Virtually certain

Warmer and more frequent 
hot days and nights over 
most land areas

Very likely Virtually certain

Warm spells/heat waves: 
frequency increases over 
most land areas 

Likely Very likely

Heavy precipitation events: 
frequency increases over 
most areas

Likely Very likely

Area affected by droughts 
increases 

Likely in many regions  
since 1970s

Likely

Intense tropical cyclone 
activity increases

Likely in some regions  
since 1970s

Likely

Increased incidence of 
extreme high sea level 
(excludes tsunamis)

Likely Likely

Table 1.  Climate extremes modified from IPCC Summary for Policy Makers.40 In this table, recent trends, assessment of 
human influence on trends, and projections of extreme weather and climate events for which there is evidence of an 
observed late 20th-century trend are presented. 

Notes: Changes in frequency of coldest and hottest days and nights refer to the coldest or hottest 10%. Extreme high 
sea level depends on average sea level and on regional weather systems. It is defined here as the highest 1% of hourly 
values of observed sea level at a station for a given reference period. Changes in observed extreme high sea level closely 
follow the changes in average sea level.
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8.4	 Projections of changes in hot days and heat waves 

A “return period,” also known as a recurrence interval, is an estimate of the likelihood of 
events such as exceeding a maximum daily temperature. “Return values” are thresholds that 
will be exceeded on average once every return period. 

The IPCC has projected that the number of hot days will increase. The projected return 
periods for the maximum daily temperature that previously was exceeded on average once 
during a 20-year period in the late 20th century (1981–2000) will decrease, implying that hot 
days will happen more frequently (Figure 8). For example, for western North America (region 
3 on Figure 8), a hot day temperature that occurred only once in 20 years in the period 1981–
2000, for the period 2046–2065 will occur every three to four years with an uncertainty of 
occurring between 1.5 and six years, depending on the emissions scenario. 

Figure 8.  Projected return periods for the maximum 
daily temperature that was exceeded on average 
once during a 20-year period in the late 20th 
century (1981–2000). The box plots show results 
for regionally averaged projections for two time 
horizons, 2046 to 2065 and 2081 to 2100, compared 
to the late 20th century, and for three different 
emissions scenarios (from the IPCC’s Special Report 
on Emissions Scenarios, or SRES) (B1, blue; A1B, 
green; A2, red). The boundaries of the regions are 
shown in the lower right. From IPCC.41

Environment Canada’s Canadian Centre for Climate Modelling and Analysis has conducted 
scientific simulations of future climates. The number of hot days (days with a maximum 
temperature over 30°C) is projected to increase across Canada (Figure 9). For example, these 
model simulations show that Toronto would go from about 12 hot days in the period 1961–
1990, to about 37 in the period 2041–2069, which implies that the increase in hot days will 
escalate over the period. 

Figure 9.  The number of hot days  
(days with a maximum temperature over 30°C) 
projected for several Canadian cities  
by Environment Canada. 
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Return period 

A return period is the average 
time between occurrences of a 
defined event. The return value 
is the highest (or, alternatively, 
lowest) value of a given variable, on 
average occurring once in a given 
period of time (e.g., in 10 years).

8.5	 Projections of changes in precipitation intensity 

As it did for heat waves, the IPCC examined the projected changes in return periods for a 
daily precipitation event that was exceeded in the late 20th century on average once during a 
20-year period (1981–2000) (see Figure 10). For example, for western North America (region 
3), a daily precipitation event that occurred once every 20 years before is projected to occur 
every 12 years, with an uncertainty of 7 years to 17 years. Thus there will be less time between 
heavy precipitation events on average.

Figure 10.  Projected return periods for a daily precipitation event that was exceeded in the late 20th century 
on average once during a 20-year period (1981–2000). The box plots show results for regionally averaged 
projections for two time horizons, 2046 to 2065 and 2081 to 2100, compared to the late 20th century, and 
for three different SRES emissions scenarios (B1, blue; A1B, green; A2, red). The boundaries of the regions are 
shown in the lower right of Figure 8. From IPCC. 42

The Canadian Centre for Climate Modelling and 
Analysis has also conducted scientific simulations of 
projected changes in 24-hour extreme precipitation 
events (Figure 11) for the projections of the event 
recurrence time (in years) for events of a given 
magnitude. 

This return period analysis is used to project changes 
in future return values of extreme rainfall events for 
a number of return periods. Scientific information 
on changes to future return values of extreme rainfall 
events is needed to be able to take into account 

climate change impacts on infrastructure and to develop adaptation strategies and policies. 
For example, the design criteria for storm water infrastructure are constrained by the largest 
precipitation event anticipated during a fixed design period (e.g., 20, 50 or 100 years).
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Figure 11.  Projections of the event recurrence time (in years) for extreme precipitation events of a given 
magnitude (Environment Canada, based on the IPCC A2 scenario). 

Figure 11 demonstrates that an event of, for example, 70 mm of rain over 24 hours (which has 
occurred on average about once every 50 years averaged across North America in the latitude 
band 25N to 65N) would occur statistically about once every 25 years  
by 2090. 

A 2011 paper published in the Journal of Climate on projected changes in extreme 
precipitation characteristics over Canada found quite similar results in comparing two 
methods: the 20-year return level of one-day precipitation extremes for the 2041–2070 
period increases between 3 and 10 mm when compared to the 1961–1990 period; and the 
20-year return level of seven-day precipitation extremes increases between 9 and 20 mm. The 
conclusions of this paper include the statement that “an increase in magnitude of short (i.e., 
1-day) and longer (i.e., 7-day) duration precipitation extremes will have severe implications for 
various water resource–related development and management activities such as combined sewer 
systems, flood control in fast responding areas, and water storage systems, etc.”43
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8.6	 Projections of changes in large-scale extreme winds

Because there have been few studies of storm-related extreme winds and because of the 
difficulty of simulating wind events in climate models, it is not possible to say with high 
confidence how extreme winds will change in the future. However, a new study projects 
average changes in the means of the daily averaged wind speeds (for the height of 10 m above 
ground) for the period 2081–2100 relative to 1981–2000, based on the results from 19 global 
climate models.44 For the period December to February, winds are projected to increase by 
more than 10% along the west coast of British Columbia; across most of northern Canada; 
in areas across eastern Manitoba and northern Ontario; and extending south over parts of 
the Great Lakes and northwestern Quebec. For the June to August season, wind speeds are 
projected to increase across northwestern Canada, the upper Great Lakes, most of Quebec 
and Atlantic Canada.

An area where there is greater confidence is the mean tropical cyclone maximum wind speed, 
which appears likely to increase, although increases may not occur in all ocean basins. As the 
sea surface temperatures increase in the Atlantic Ocean, tropical cyclones – called hurricanes 
in the Atlantic oceanic areas – will likely gain in energy, bringing impacts on eastern and 
especially Atlantic Canada that are a concern. 

8.7	 Projections of changes to tornadoes, hailstorms  
	 and other small-scale extreme events

In Canada, tornadoes are currently observed (Figure 12) mainly in Ontario (19 per year), 
Saskatchewan (15) and Alberta (13),45 with the most deaths coming from tornadoes in 
Ontario and Saskatchewan. The Maritime provinces rarely experience the severe types of 
thunderstorms that can spawn tornadoes, mainly because they don’t have the dry conditions 
high in the atmosphere that are needed to create the necessary unstable conditions. Tornadoes 
are most common in flat terrain and in areas with little water. Mountainous terrain tends 
to break up the circulation that creates tornadoes, and the cooling effect of water tends to 
stabilize the atmosphere. The conditions that create tornadoes occur mostly during warm 
months, with more than three-quarters occurring in June, July and August.

Figure 12.  Observed tornado frequencies in Canada.46
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In Canada, most tornadoes are relatively weak on the Fujita Scale (see table below) – over 50% 
are either in the F0–F2 range or of unknown scale because the scale can only be determined 
if the tornado impacts a structure or community. About 2% are F3 and 0.3% are F4; the first 
observed F5 tornado occurred in Elie, Manitoba, on June 22, 2007. The United States receives 
on average over 1,000 tornadoes each year and about 20 are F5 tornadoes.47 The two tornado 
“alleys” in Canada – southwestern Ontario, and across the southern parts of the Prairies – are 
both extensions of tornado alleys in the United States. 

Fujita Tornado Scale

Rating Event type

Maximum 
wind 
speed 
(km/h) Type of damage done

F0 Gale tornado 64–116 Some damage to chimneys; breaks branches 
off trees; pushes over shallow-rooted trees; 
damages sign boards.

F1 Moderate tornado 117–180 The lower limit is the beginning of hurricane 
wind speed; peels surface off roofs; mobile 
homes pushed off foundations or overturned; 
moving autos pushed off the roads; attached 
garages may be destroyed.

F2 Significant tornado 181–252 Roofs torn off frame houses; mobile homes 
demolished; boxcars pushed over; large trees 
snapped or uprooted; light object missiles 
generated.

F3 Severe tornado 253–330 Roofs and some walls torn off well-constructed 
houses; trains overturned; most trees in forest 
uprooted.

F4 Devastating tornado 331–417 Well-constructed houses levelled; structures 
with weak foundations blown off some distance; 
cars thrown and large missiles generated.

F5 Incredible tornado 418–509 Strong frame houses lifted off foundations and 
carried considerable distances to disintegrate; 
automobile-sized missiles fly through the air 
in excess of 100 metres; trees debarked; steel 
reinforced concrete structures badly damaged.

For small-scale extreme events such as tornadoes, hailstorms and thunderstorms, there are 
considerable difficulties in making specific projections. There are several reasons for this, 
including the fact that climate models do not simulate these small-scale phenomena, as well as 
competing physical processes that may affect future trends. As the IPCC 2012 special report 
concluded, “There is low confidence in observed trends in small spatial-scale phenomena such as 
tornadoes and hail because of data inhomogeneities and inadequacies in monitoring systems.”48
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Reported tornado and thunderstorm occurrences in the United States over the past 50 years 
show an increasing trend, but this is thought mainly to reflect increased population density 
and increased numbers of people in remote areas49,50 making it more likely that these storms 
will be observed. A warming climate creates unstable atmospheric conditions that lead to 
these kinds of extreme events, but it also reduces the pole-to-equator temperature gradient, 
somewhat offsetting this risk. As yet, the scientific literature has been limited in resolving 
these issues.51

Following a major tornado outbreak in April 2011, the U.S. National Oceanic and 
Atmospheric Administration issued a report that ends with the statement, “So far, we have 
not been able to link any of the major causes of the tornado outbreak to global warming. 
Barring a detection of change, a claim of attribution (to human impacts) is thus problematic, 
although it does not exclude that a future change in such environmental conditions may occur as 
anthropogenic greenhouse gas forcing increases.”52

In view of the deficiencies in the observational base and noting the concluding part of the 
preceding quote, it is appropriate to undertake a risk analysis of tornado risk in Canada in 
the context of a changing climate. This analysis leads to the conclusion that risk-management 
strategies should assume that there will be more frequent events in the future.53

In view of the distribution of tornadoes in Canada, it is important to note the impacts of 
tornadoes in the United States over the past 30 years in terms of their economic costs. Almost 
all the severe weather events where economic losses were greater than $1B (mostly tornados) 
have been located within a region from Texas–Oklahoma, across Kansas–Missouri and into 
Illinois. Although climate warming does not simply transfer weather elements poleward, 
translating this region of extreme events northward would put it into southwestern Ontario. 
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8.8	 Projections of changes in wildland fires

As was tragically demonstrated this year in Alberta and Ontario, wildland fires can have great 
impacts on Canadians. Several studies have been conducted to project the changes in wildland 
fires across Canada. This section relies mostly on the most recent research by Wotton et al., 
2010.54 A wildland fire model was developed and tested with two global climate models, and 
then projections of future fire occurrence levels across Canada were made for 2030 and 2100 
with the Canadian model, and for 2100 with the United Kingdom model. The study shows 
that most fires are started either by lightning or human activities. While fire activity increases 
across all of the studied forested regions in Canada, there are major regional variations. The 
Canadian simulations suggest an increase in overall fire occurrence of 25% by 2030 and 75% 
by the end of the century, while the United Kingdom model projected an increase of 150% by 
the end of the century. (See Figure 13.) 

At present, through active forest fire management, fires in Canada are suppressed and, in most 
cases, kept to a very small size. Notably, it is the 3% of fires that escape initial containment 
and lead to large fires with area burned greater than 200 hectares that account for over 97% of 
the total area burned. Studies have shown that in Canada, there is approximately 100,000 km2 
more area burned per degree Celsius of temperature increase.

Figure 13. Relative change (% increase) in fire occurrence between future and baseline scenarios for the 
Canadian model due to lightning (left) and human activities (right). Relative change is given as the percentage 
increase in the number of fires predicted divided by the total number of fires in baseline. For the 2030 period, 
the largest percentage changes in the total number of fires are in Ontario and the Northwest Territories, both 
at 46%.
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8.9	 Projections of sea level rise

Since the IPCC 2007 Assessment Report, observations of sea level rise have been  
changing at even greater rates than were indicated by the IPCC projections (Figure 14). 
New observations of increasing loss of mass from glaciers, ice caps and the Greenland and 
Antarctic ice sheets have now led to projections of global mean sea level rises of 1 metre  
or more over the next century.55

Figure 14.  Change in sea level from 1970 to 2008, relative to the sea level at 1990.56 The annual observations 
are shown by the dots connected by the light line. The light blue line from the mid-1990s to 2008 reflects 
new satellite observations. The solid red line represents the observations smoothed to remove the effects 
of interannual variability. The envelope of IPCC projections from 1990 is shown for comparison. The three 
short dash lines represent individual projections depending on the IPCC emissions scenario. The “most likely” 
scenario, based on analyses in 2000 is the middle scenario, which has shading around it to indicate the 
uncertainty. Note that the satellite observations follow along what was considered the upper limit of sea level 
rise for the period 2000–2010.

Canada is a country with very long coastlines and the projected rising of the seas as 
the climate changes will have a tangible impact here. A report of the British Columbia 
government is projecting that sea level rise will be both faster and higher than previously 
anticipated. For planning purposes they recommend using the following rates: for the next 
25–50 years, 0.5 m; by 2100, 1.0 m; and for more than 100 years, 2.0 m.57
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9.	 Review

Based on international and national scientific assessments and on internationally peer-
reviewed scientific papers, the climate is changing, human activities are the main cause and 
the changes in the decades to come will have impacts on Canada, Canadians and people 
around the world. 
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10.	 Regional Syntheses

A narrative summary of past and projected weather trends for each of the seven Canadian 
regions is provided, building on the preceding information and the previously cited report 
Climate Change Information for Adaptation. These summaries focus on the most salient 
climate effects for each of the regions, applying the projected environmental changes to the 
regional level. Variations in the categories of information presented in these sections reflect 
the varying availability of reliable historical weather-related data for those regions on which 
to base projections. For example, in some cases data is available only for some provinces or 
municipalities due to limitations in weather monitoring. 

These sections present projections based on the best available peer-reviewed climate science, 
and are not intended to be predictions of future climate changes. When projecting future 
changes in the weather, there is always the risk of inaccuracies. As the analysis gets down 
to the local level, the degree of certainty associated with the projections declines due to 
differential data quality and the challenges of applying macro-weather trends to diverse 
micro-climates. 

10.1	 Atlantic region

The four Atlantic provinces – New Brunswick, Prince Edward Island, Nova Scotia, and 
Newfoundland and Labrador – have maritime weather and climates and are affected by 
storms both from the west on the continent and from marine systems moving from the south 
and occasionally the southeast. The Public Safety Canada Canadian Disaster Database shows 
that six hurricanes occurred in this region from 1990 to 2005.58 The most frequent cause of 
losses was flooding, which resulted from 16 events. Winter storms, including snow storms and 
storm surges, resulted in 13 events, while no tornadoes occurred in Atlantic Canada over this 
same period.

The most costly weather events have been hurricanes, which usually hit the region as they are 
in the process of transforming into mid-latitude storms (see Table 2). Although these may be 
downgraded hurricanes in the usual definition, they can still have large impacts as the winds 
and rains can come together in intense sectors of the storm. The costliest event up to 2011 was 
Hurricane Juan, with insured losses of about $158M. The more recent Hurricane Igor, which 
struck Newfoundland in September 2010, also caused a lot of damage. 
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Date Location Event

Insured losses 
(adjusted for 

inflation 2010 $M)

2003 Sept. 28–29 NS, PEI Hurricane Juan 157.9

2010 Sept. 20–21 NL Hurricane Igor 70

2010 Dec. Atlantic provinces Atlantic storms 50.7

2003 Mar. 30–Apr. 1 Atlantic provinces Flooding 27.9*

1998 Jan. NB Ice storm 25.5

1999 Jul. 28 Atlantic provinces Flooding 19.8

Table 2. The six most costly insured-loss weather-related events in Atlantic Canada in the period 1983 through 2011.59 

*Figures are not available by province. Insured losses were likely lower for the province of New Brunswick. 

Warm days exceeding 25°C are already increasing; see, for example, Figure 15 for Halifax. 
In Halifax, a well-defined upward trend is observed for days above 25°C. Over the 30-year 
period, the number of days above 25°C increased about 72%. The average number of days 
above 25°C during 2001–2010 increased by about 14 days compared to 1991–2000.

Figure 15. Trends of days with temperatures above 	 Figure 16. Trend of extreme precipitation days 
25°C during summer in Halifax, 1980–2010.	  during winter in St. John’s.

Based on this increasing rate, in 2040–2050 Halifax will face almost 74 days where summer 
temperatures will be above 25°C. Further, it is projected that there would be on average 
nine days with temperatures higher than 30°C in 2040–2050 compared to one day during 
1981–1990. For St. John’s, there is a more moderate increase of summer days above 25°C. The 
future projection shows that during 2041–2050 about 22 days will have temperatures higher 
than 25°C, which is approximately 46% higher than in the 2001–2010 period. Overall, with 
climate warming, there is projected to be warming of about 3°C across the Atlantic region in 
the winter, and 2–3°C in the summer by 2050.
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Precipitation has also been on the rise in Atlantic Canada. For example, winter events of 
greater than 10 mm precipitation have increased in St. John’s (Figure 16). Looking into 2050, 
overall changes in precipitation will not be large, with Newfoundland projected to see about a 
10% increase in the winter by 2050, while other Atlantic provinces are expected to experience 
precipitation changes in the 0–10% range. There will be a reduction in snow to a total 
precipitation ratio of about 10%. Summertime precipitation changes will be generally smaller 
at 0–5%, with the possibility of decreases in New Brunswick and Prince Edward Island.

However, by 2050, intense precipitation will increase such that events now having a 20-year 
return period will occur about every 10 to 15 years, with the metric for Newfoundland being 
closer to 10 years. Given the impacts of hurricanes mentioned earlier, it is of concern that the 
IPCC (2007) projects an increase in intense tropical cyclone activity.60 This will result from 
the warming of ocean temperatures. The risk of more intense hurricanes and winter storms, 
leading to more intense precipitation, adds to the risks for more flooding, which is already the 
most frequent disaster event in Atlantic Canada.

Wind disaster records from Public Safety Canada indicate that the frequency of storms with 
winds that are greater than 100 km/hour rose nationally by 16% from 1970 to 1990, mostly  
in coastal regions except for tornadoes.61 With the mean sea level projected to rise 15–25 cm 
by 2050, there is a bigger risk that hurricanes or winter storms will result in significant  
storm surges. 

Another concern is the projection that the occurrence of freezing rain events in Newfoundland 
will increase by 50%, with a smaller increase of about 20% projected for the Nova Scotia, New 
Brunswick and Prince Edward Island areas. Freezing rain increases the risk of road accidents 
and also can cause major power outages and have other impacts with great societal costs, as 
was shown by the eastern Canada ice storm of 1998.
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10.2	 Quebec

The province of Quebec is characterized by wide variations in both climate and population 
density. Most people live along the St. Lawrence or Ottawa rivers, or nearby in southern 
Quebec. The weather for most areas is continental, with four seasons varying from hot 
summers to cold, snowy winters. Central Quebec has longer, colder winters and shorter, 
cooler summers, whereas in the far north there is a severe Arctic climate with freezing winter 
and continuous permafrost. Any change in the climate pattern will strongly influence the 
population, natural and built environment, and socio-economic activity of the region. 

Over the past 30 years, the five most expensive events in Quebec from an insured loss point of 
view (Table 3) occurred in southern Quebec, where the major concentrations of insured assets 
are located. The most costly event, and the most costly in Canada’s history, was the January 
1998 ice storm centred over Montreal and surrounding areas. The insured losses were over 
$1.6B, and the total economic costs are estimated in the $5B to $7B range. Generally, flooding 
and wind/hail events have constituted the next most costly events in the province.

Date Location Event

Insured losses 
(adjusted for 

inflation 2010 $M)

1998 Jan. Southern QC Ice storm 1,652

1996 Jul. 19–20 Saguenay Flooding 271.5

2011 Apr. 27–28 ON, QC Wind and thunderstorm 210*

2011 Aug. 28–30 ON, QC, NB Wind and thunderstorm 
event remnants of Irene 130*

2008 Jun. 10 Several regions, QC Hailstorm 127.6

1996 Nov. 9 Montreal and Quebec City Flooding 99.6

Table 3. The five most costly insured-loss weather-related events in Quebec in the period 1983 through 2011.62  
*Figures are not available by province. Insured losses were likely lower for the province of Quebec. 

In winter, northern Quebec along the shores of Hudson Bay and around Ungava will have 
warmed by about 5°C by 2050; central Quebec will have warmed less, and in Montreal and 
Quebec City and along the St. Lawrence the winter warming will be in the range of 3–4°C.  
In the summer, the overall warming will be less, around 2–3°C in the south, lowering to about 
2°C near the northern waters. In Montreal, the number of days with temperatures lower than 
–10°C and –15°C has declined over the past 30 years, and will decline further by 2050. 
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With the warming of seasonal temperatures will also come a lengthening of the growing season 
and increase in the number of frost-free days. There will also be more hot days. For example, 
Quebec City, which had about five days per summer over 30°C in the period 1961–1990, will 
have about 15 such hot days per summer by mid-century. Montreal had about eight hot days in 
the same period, and this is projected to increase 60% by 2050. Climate models project that the 
20-year return values of annual maximum of the daily temperature will increase by 2–3°C in 
southern Quebec and by about 2°C in central and northern Quebec by 2050. 

Montreal had about seven to eight days of heavy precipitation (more than 10 mm per day) 
averaged over the period from 1970–2006 in each season. By 2050, there will be about a 
40% increase in heavy precipitation in the summer and about 17% in the winter. In terms of 
return period, the heavy precipitation event that has been a one in 20-year occurrence should 
become a one in 10-year occurrence by 2050. 

Wintertime precipitation will also increase considerably, about 50% along Hudson Bay and 
by 10–15% in the south of the province. The ratio of snow to total precipitation will decline 
by 15% in the winter. There will be reduced ice coverage on the bay and in the north of the 
province, which will contribute to more sea-effect precipitation, much of it still snow in the 
north. Summertime precipitation will generally increase, but only in the 0–10% range. 

Recognizing the potentially huge impact of freezing rain events, it is important to note that 
the projections for the Ottawa–Montreal–Quebec City region show an increase in the number 
of freezing rain events of more than four hours by about 50% by 2050. Events of more than six 
hours are projected to increase by close to 80% by 2050. Further north in the province where 
there have been fewer hours of freezing precipitation, the number of freezing rain events 
of more than four hours are projected to increase by 70% during the period December–
January–February. Overall, there will be significant increases in freezing rain events across the 
province in January. 

With the changing climate will come an increased frequency of forest fire occurrences in the 
Gaspé region, mainly due to lightning, and near the St. Lawrence River. The increases could 
be over 100% by the end of the century, and somewhat less in 2050. 
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10.3	 Ontario

Over the past 30 years, the 10 most expensive events in Ontario, from an insured loss point 
of view (Table 4), occurred in southern or eastern Ontario, where the major concentrations 
of insured assets are located. Most of the events occurred in the spring or summer, and the 
majority involved wind or water damage. 

Date Location Event

Insured losses 
(adjusted for 

inflation 2010 $M)

2005 Aug. 19 Southern ON Wind/rainstorm 642.4

2009 Jul. 24–28 Southern ON Wind and thunderstorm 218.9

1998 Jan. Eastern ON Ice storms 216.9

2011 Apr. 27–28 ON, QC Wind and thunderstorm 210*

2000 May 12 Southern ON Storm 156.5

1985 May 31 Barrie Tornado 155.2

1999 Jan. Southern ON Snow storm 150.5

2011 Aug. 28–30 ON, QC, NB Wind and thunderstorm 
event remnants of Irene 130*

2002 Mar. 9 ON Windstorm 129.3

2010 June 5–6 Leamington and 
surrounding areas Wind and thunderstorm 120.0

Table 4.  The 10 most costly insured-loss weather-related events in Ontario for the period 1983 through 2011.63  
*Figures are not available by province. Insured losses were likely lower for the province of Ontario. 

Over the last 30 years, the number of days with a maximum temperature above 30°C in the 
summer at Toronto Pearson Airport increased (Figure 17), and although there is considerable 
variation from year to year, these increases reflect a statistically significant trend. Based 
on this trend, the average number of days with a maximum temperature above 30°C in 
the summer will increase from about 15 in 2005 to about 28 in 2050. In the climate model 
simulations shown earlier (Figure 11), the number of hot days in Toronto is projected to go 
from about 12 hot days in the 1961–1990 period to about 37 in the period 2041–2069. 
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Figure 17.  Number of days in the summer where the maximum temperature at Toronto Pearson Airport was 
above 30°C. 

As we look to 2050, Ontario will be warmer on average throughout the year compared to the 
present. In the north, near Hudson Bay, winter temperatures will be about 4.5°C warmer. 
In the south the warming will be less, about 3°C along the southern Great Lakes. Overall, 
summertime warming will be a little less than 2–3°C across the province. The number of 
frost-free days is expected to double in winter 40 years from now. The number of days below 
–15°C and –20°C both showed decreasing trends from 1970–2006 and are expected to 
decrease greatly in next 40 years. 

Another way of looking at the effects of climate change in this province is to consider the 
20-year return values of annual maximum daily temperature. These values are projected to 
increase by 2–3°C in southern Ontario and by 2°C in northern Ontario by 2050. The hot days 
are likely to be accompanied by more smog and associated health impacts of heat and air 
pollution. As the mean shifts upward, there could be summers with over 50 hot days by mid-
century. In some places near the upper Great Lakes, there will be little change, or possibly 
declines in the number of hot days with a maximum temperature greater than 30°C due to 
cooler waters of the lakes in spring and summer.

By 2050, wintertime precipitation will be higher by 20% near Hudson Bay with more rain, 
compared to snow, than at present. In the south, precipitation will increase by about 10% in 
winter. In the summer the precipitation changes will be much smaller, about 5% increase in 
the north and a little smaller change in the south. The ratio of snow to total precipitation will 
decrease by 5–10% over most of the province, and possibly decrease by 15% in the Ottawa 
Valley. However, in northern Ontario around the upper lakes, the warming with reduced ice 
cover will keep the lakes ice-free later into the fall, resulting in more snowfall near the lakes as 
the water temperatures cool. With warmer atmospheric temperatures, there will be generally 
more evaporation, so lakes, soils and vegetation will lose water. Generally, the Great Lakes 
(and other lakes) will see a marked decrease in wintertime ice cover, becoming close to zero 
for the southern lakes. 
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In terms of severe precipitation, there were seven flood-producing heavy rain events in 
the Toronto area with intensities exceeding the expected return period value (the highest 
precipitation value on average occurring once in a 20-year period) during the period of 1987–
2007. The rain intensities have shown the greatest seasonal increase over southern Ontario 
in the spring. The record observed short-duration rain intensities have included Tobermory 
Cypress Lake, 112 in 60 min and 118 mm in two hours in 2003; Toronto North York, 66 mm 
in 15 min, 90 mm in 30 min and 132 mm in two hours in 2005; Upper Grand River basin, 
more than 200 mm in one day in 2004; and Peterborough (Trent University), 240 mm in one 
day in 2004. For North Bay, an interesting trend is observed. While the days with greater than 
10 mm precipitation remained unchanged, the number of days with higher precipitation, 
above 30 mm, has moderately increased with warmer temperature, which has the capability 
to hold more moisture; this trend is projected to continue. Projecting forward for Ontario, the 
annual maximum 24-hour precipitation rate that at present occurs once every 20 years, will 
occur more often and become a once every 12–14 year event. Meanwhile, in northern Ontario 
the occurrence rate will lower from once every 20 years to closer to once every 10 years. With 
more heavy precipitation events over Ontario, there will be an increased risk of flash floods.

A study of April–November rainfall extremes of four selected river basins (Grand, 
Humber, Rideau and Upper Thames) showed large percentage increases in future three-day 
accumulated rainfall extremes with a warming climate.64 The 20-year return values of annual 
maximum three-day accumulated rainfall totals are projected to increase by 30% to 55% for 
the period 2026 to 2075. Since the observed annual maximum three-day accumulated rainfall 
totals are about 80 mm, these are larger changes (25–45 mm) than the average projected 
for Canada as a whole. There are uncertainties in all these projections, but they all show 
significant increases in the intensity of extreme precipitation events. 

Hail is not as costly a hazardous event in Ontario as in the Prairies, but on September 24, 
2006, a windstorm-hail event in the Oshawa region cost about $4.6M in insured losses. 
A study of hail events over the last two decades showed an ever-increasing frequency of 
severe hail events.65 The analysis showed that severe hail frequency is closely linked with 
atmospheric convective instability and that high hail event years are associated with warmer 
air temperature than low hail event years. It is concluded, therefore, that severe hail events 
would occur more frequently in the warming climate.

With warming winters and increasing precipitation, eastern Canada, including Ontario, is also 
projected to have more freezing rain events in the future than was historically experienced 
during the period 1958–2007.66 The increase in the number of freezing rain events could 
be progressively greater from south to north, or from southwest to northeast across eastern 
Canada. For example, the percentage increase for severe freezing rain events (lasting six hours 
per day or longer) is projected to be about 35% in southwestern Ontario and around the lower 
lakes, and about 80% in eastern Ontario around the Ottawa Valley, extending to Sudbury by 
the period 2081–2100. In northern Ontario the increases would be between 80% and 100%. 
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Summer days with more than 50 km/hour winds have shown a significant increasing trend in 
Toronto, where the windy days increased on average by three times after 2000. This indicates 
an increased frequency of more severe damaging winds in the decades to come.

Also, with the shift in wind patterns, it is projected that there will be an increase in intense 
winter storms affecting all of Ontario. Global climate models project wintertime wind 
increases over northern Ontario and extending south over parts of the Great Lakes of nearly 
10% by 2050, relative to 1981–2000.67 During the summer, the highest wind increases, also 
about 10%, will occur over the Great Lakes. The trend toward reduced ice cover and stronger 
winds over the Great Lakes will increase the incidence of damaging storm surges. 

As shown previously, in Figure 13, the warming conditions will lead to very large increases 
in the occurrence of wildfires – 50% to 500% – with the highest increases over northwestern 
Ontario.

10.4	 Manitoba and Saskatchewan

The five largest insured weather-related events in Manitoba and Saskatchewan have resulted 
from flooding, wind, hail and thunderstorms (Table 5). As the climate changes, fluctuating 
precipitation regimes, wind and wildfire will present considerable risks across Manitoba and 
Saskatchewan.

Date Location Event

Insured losses 
(adjusted for 

inflation 2010 $M)

1993 Jul. 25–Aug. 14 Winnipeg Flooding 251.6

1996 Jul. 16 Winnipeg Flood, hailstorm 192.4

2008 Sept. SK Hailstorm 134.8

2010 Jul. 1–3
South of Swift Current, 

Wynyard and Hudson Bay 
region (SK)

Wind and 
thunderstorm 100.0

2009 Aug.13–15 Southern MB, from 
Winnipeg to Steinbach

Wind and 
thunderstorm 84.5

Table 5.  The five most costly insured-loss weather-related events in Manitoba and Saskatchewan in the period 1983 
through 2011.68 
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As in the rest of Canada, Manitoba and Saskatchewan will experience rising average annual 
and seasonal temperatures and changing precipitation regimes by 2050 as a result of the 
changing climate. However, drought and water scarcity are of particular concern for the 
Prairie Provinces, where historically large loss events for the insurance industry have resulted 
from different hazards. 

In southern regions of Manitoba and Saskatchewan, annual average temperatures could rise 
by 2–4°C by 2050, compared to 2010. Temperature increases will be greatest in the winter 
and spring, with possible 3–4°C average increases during these seasons. Thus, in Winnipeg, 
winter temperatures could increase by 3–4°C, summer average temperatures may increase by 
2–4°C, and autumn averages may increase by 1–2°C by 2050. Increasing average temperatures 
are also expected in the northern regions of Manitoba and Saskatchewan. By 2050, yearly 
average temperatures could increase by 2–4°C in the north, with winter and spring seasons 
experiencing the greatest potential increase (3–4°C per season). 

In southern Manitoba and Saskatchewan, winter precipitation is likely to increase by 3–10% 
by 2050. Average precipitation for the summer months is projected to decrease in southern 
Saskatchewan and southeastern Manitoba by a few percent, while average precipitation 
will remain unchanged or increase slightly across the middle of the provinces. Further 
north within the provinces, the winter precipitation will increase more, reaching 15% in 
the northwest part of the region and closer to 20% in the northeast part near Hudson Bay. 
Summer precipitation will also increase in the northern regions but in the 5–10% range.

In the Prairie Provinces, drought has historically been the most frequent cause of natural 
disasters. While average precipitation values could increase or decrease under changing climate 
conditions, a recent Natural Resources Canada report on climate change impacts suggests that 
water scarcity resulting from a greater number of dry years is a likely climate change outcome 
for the Prairie Provinces.69 Between 1900 and 2005, the Canadian Disaster Database recorded 
35 drought disasters in Saskatchewan and 33 in Manitoba. Drought and water scarcity are 
likely to be a growing climate risk throughout the Prairie Provinces.70 Thus, decreases in 
average precipitation in southern areas could have serious implications in both provinces. 

While average precipitation amounts are likely to decrease in some parts of the two provinces, 
extreme precipitation events are expected to increase in frequency. In northern Saskatchewan 
and Manitoba, historical one in 20-year rainfall amounts could increase by 10 mm by 2050. A 
5–10% increase in severity of rainfall would result in a doubling of the expected frequency of 
one in 20-year rainfall events, such that rainfall amounts that were historically associated with 
one in 20-year return periods will be associated with one in 10- to 15-year frequencies. 

Flooding has historically been the second most common cause of disasters in both 
Saskatchewan and Manitoba. Between 1900 and 2005, the Canadian Disaster Database 
recorded 19 flood disasters in Saskatchewan and 28 flood disasters in Manitoba.71 As a 
result of the changing nature of extreme events resulting from climate change, flooding may 
continue to be a common cause of disaster events in the provinces, particularly in urban areas, 
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which are susceptible to high costs from extreme rainfall events.72 Further, while average 
annual, maximum and minimum daily stream flows are expected to decrease throughout 
Manitoba and Saskatchewan, increasing severe rainfall events may increase flood risk along 
the Red River through Winnipeg. As well, increasing sea levels have implications for northern 
Manitoba. Sea level observations indicate a historical (1993–2007) rise of 3.2 cm per decade, 
suggesting that the Hudson Bay coastline in northern Manitoba may be subject to a sea level 
rise of 20 cm by 2050.

The proportion of precipitation that falls as snow will decrease over most of Manitoba and 
Saskatchewan by 2050 during the winter, spring and autumn seasons. The greatest decrease 
in snowfall proportions will be experienced in spring throughout the provinces, where spring 
snowfall proportions could fall by 10% in northern areas and 15% in southern areas. In the 
northern regions, the provinces will experience a snowfall decrease of 5% in the winter by 2050.

While wildfire has not historically resulted in significant insured losses in Manitoba and 
Saskatchewan, there have been several historical disaster events associated with wildfire. 
Between 1900 and 2005, there were three wildfire disasters in Manitoba and seven wildfire 
disasters in Saskatchewan. Wildfire occurrence and area burned is expected to increase in 
Manitoba and Saskatchewan as a result of climate change, and the occurrence of wildfires 
caused by lightning is expected to increase considerably, with a more moderate increase 
in human-caused wildfire events.73 By 2050, a 50% increase in area burned by wildfires is 
expected in the northern regions of Manitoba and Saskatchewan. 

Wind represents a significant hazard in Manitoba and Saskatchewan. In 2007, Elie, Manitoba, 
a few miles west of Winnipeg, was home to Canada’s first recorded F5 tornado. Several other 
severe tornado events have occurred in Manitoba, including an F4 tornado in Birtle in 1994 
and an F4 in the Rosa-St. Malo area in 1977, which caused three deaths. One fatality resulted 
from an F2 tornado in Gull Lake in 2006.74 Regina was the site of Canada’s most deadly tornado, 
with 28 deaths in 1912, and a southeastern Saskatchewan tornado in 1920 killed four.75 While 
reporting of tornado events in the United States has resulted in a larger number of recorded 
tornadoes, trends in actual tornado occurrence over time are unclear.76 However, an 8–15% 
increase in intense winter storms is expected for all of Manitoba and Saskatchewan by 2050. 

Hail results in considerable insured losses in the Canadian Prairies. Research on trends in 
hail occurrences and the impacts of climate change on hail in Canada and the Canadian 
Prairies is limited. However, studies from other jurisdictions indicate increases in historical 
hail event frequencies and possible climate change implications. For example, as discussed 
earlier, a 2008 study of Ontario revealed an increasing frequency of hail events over the past 
two decades,77 and a 2008 Australian study argued that hail events will increase as a result 
of climate change.78 Similarly, a 2001 ICLR study found a statistically significant increase 
between 1977–1982 and 1983–1993 in the frequency of hail events in Alberta.79 As discussed 
in the Ontario section, hail is associated with warmer temperatures and is thus likely to 
increase as a result of climate change.
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10.5	 Alberta

The costliest disaster event for Alberta has been the very recent Slave Lake fire, where current 
estimates put insured losses at $700M. While the cause of this event is now suspected to be 
arson, it is likely that the strong winds and extended dry spell in that region of the province 
contributed to the large scale of losses experienced. Prior to this, the major insured loss events 
were wind and hailstorms, with flooding and tornadoes also being significant (Table 6).

Date Location Event

Insured losses 
(adjusted for 

inflation 2010 $M)

2011 May 14–15 Slave Lake Wildfire 700.0

2010 Jul. 12–13 Calgary and other 
areas in southern AB

Wind and 
thunderstorm 500.0

1991 Sept. 7 Calgary Hailstorm 482.2

2009 Aug. 1–3 Southern AB Wind and 
thunderstorm 361.5

2005 June 6–8, 17–19 AB Flooding 326.6

Table 6.  The five most costly insured-loss weather-related events in Alberta in the period 1983 through 2011.80

Over the past few decades, there has been an increasing trend in hot summer days (days 
above 25°C and 30°C) and a decreasing trend in very cold (below –20°C) winter days in 
Calgary (Figures 18 and 19).

Figure 18. Summer 
days with 
temperatures above 
25°C (left) and 30°C 
(right) in Calgary.

Figure 19. Winter days with temperatures  
below –15°C in Calgary.
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Similar to the other Prairie Provinces, Alberta will be greatly affected by drought and water 
scarcity under changing climate conditions, and can expect potential increases in hail, storm 
and wildfire events. By 2050, average annual temperatures are expected to increase by 2–4°C 
across Alberta. The winter season will see the greatest average temperature increase over the 
next 40 years, at 3–4°C, while the province can expect average summer temperature increases 
of 2–3°C. Average spring temperatures may increase in the north and south by 2–4°C and 
in central regions by 3–4°C. Autumn temperatures may increase by 2–3°C in southern and 
central regions, and 1–2°C in northern regions.

Annual and seasonal precipitation averages will shift across Alberta by 2050, with expected 
precipitation decreases in summer and increases in other seasons. Decreases in summer 
precipitation will be the greatest in southern Alberta, at 5–10% by 2050. Winter precipitation 
will increase in southern, central and northern Alberta, with the southern and northern areas 
experiencing the greatest increases of 10–15% by 2050. Spring precipitation may increase by 
5–15% in southern areas and 10–15% in central and northern areas. 

Decreases in seasonal precipitation under climate change conditions are a significant 
concern in the Canadian Prairie Provinces. Drought conditions in Alberta could have serious 
implications for the agricultural economy, as demonstrated by the 2002 Prairie drought, 
which severely affected crops and resulted in livestock feed shortages.81 Historically, drought 
has been the most common cause of disasters in Alberta, where 35 drought disasters occurred 
between 1900 and 2005.82 A 2008 climate change report from the Government of Canada 
stated that increases in water scarcity resulting from climate change presents the greatest risk 
to the Prairie Provinces, including Alberta.83 Changing precipitation patterns could result 
in lower summer stream flows, falling lake levels, retreating glaciers, decreasing soil-water 
content and a greater number of dry years. Retreating glaciers and stream flows may create 
difficulty in providing potable water to Alberta’s rapidly increasing population, and water 
scarcity may constrain Alberta’s economic development.84 In particular, Calgary could be 
subject to water scarcity issues, as water levels in the Bow and Elbow rivers are expected to 
decline under changing climate conditions. 

Flooding has been the second most frequent cause of disasters in Alberta. Public Safety 
Canada reported 34 flood disasters in the province from 1900–2005. Flooding in southern 
Alberta in 2005 resulted in approximately $300M in insured payouts – one of the largest loss 
events recorded by IBC between 1983 and 2005.85 These large losses occurred despite the fact 
that residential property insurance policies typically do not provide coverage for flooding in 
Canada, while they often do provide coverage for losses from sewer backup. 

While drought and low stream flow conditions may become more severe in the future, the 
changing nature of extreme precipitation events will likely result in continued flood risk 
throughout Alberta. Heavy rainfall events causing flash flooding in small catchment areas 
could be a particular concern, as extreme precipitation events are expected to increase in 
severity across Alberta by 2050. One in 20-year events, which from 1958 to 2007 resulted in 
an average of 25–50 mm in 24 hours in southern and northern Alberta, could increase in 
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severity by 10–15% by 2050. A 15% increase in the severity of these events would result in 
historical one in 20-year events occurring once every 10 years. By extension, historical one in 
20-year events could increase in severity by 5–10% in central Alberta in the next 40 years. 

The ratio of precipitation that falls as snow will decrease across Alberta by 2050. This trend 
will be notable in southern Alberta, where average annual ratios will drop by 15%. In the 
spring, the amount of precipitation that falls as snow will drop by 20%, while the winter 
months will see a 10% decline. In the north, the annual amount of precipitation that falls 
as snow will decline by 10% in the spring and 5% in the winter. Annually, ratios in this area 
will fall by 10% by 2050. Central regions will experience an annual decline in the amount of 
precipitation that falls as snow of 15%, with a decline of 15% in the spring season and 10% in 
the winter. Reduced snowfall could result in changes to river flood regimes in spring and may 
exacerbate water scarcity issues. Annual, maximum and minimum daily stream flow is also 
expected to decline across the province, which also has implications for water scarcity.

Historically, Alberta has suffered a greater proportion of large hail events than any other 
province in Canada. IBC data from 1983 to 2005 indicates that seven of the eight hail events 
in Canada that resulted in $50M or more in insurance payouts occurred in Alberta. Eighteen 
of the 26 large payout hail events that occurred in Canada between 1983 and 2005 occurred 
in Alberta.86 A 2001 ICLR study found that Alberta had experienced a statistically significant 
increase in hail frequency by 1983–1993 when compared to 1977–1982.87 Studies from other 
jurisdictions indicate increases in historical hail event frequencies and possible climate change 
impacts, including an increasing trend in hail events over the past two decades in Ontario88 
and a link between climate change and increasing frequency of hail events in Australia.89 Hail 
events are associated with warmer temperatures and are thus likely to increase as a result of 
climate change.90 However, historical drought periods have seen less frequent hail in some 
parts of Alberta. 

Alberta has been subject to several wildfire disasters, including the recent Slave Lake wildfire. 
While it is now thought that arson ignited the fire, it is likely that extreme dry conditions 
were an important contributing factor to the amount of damage ($700M estimated) caused at 
Slave Lake. Lightning flash density could increase by 20% in southern and northern Alberta 
by 2050, which has implications for wildfire. In central regions, the area burned by wildfires 
could increase by 15% by 2050. Average temperature changes that result in earlier onset 
of spring- and summer-like conditions will also lengthen the wildfire season and increase 
wildfire risk.91

Alberta has been subject to many storm and wind events, and central Alberta is particularly 
tornado prone. Some historical tornado events have resulted in significant impacts. Of note 
was the Black Friday tornado that struck Edmonton on July 31, 1987.92 Insured damages 
from this event were estimated to be over $200M, and total losses were estimated to be 
approximately $330M.93 Twenty-seven people were killed and 600 were injured as a result of 
this tornado.94 Twelve people were also killed in the Pine Lake tornado of April 2000. From 
1980 to 2010, there was an increasing trend in the occurrence of reported tornadoes in the 
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province. While reporting of tornado events in the United States has resulted in a larger 
number of recorded tornadoes, trends in actual tornado occurrence over time are unclear 
due to changes in public awareness and technology, which may have increased the reporting 
of tornadoes.95 However, storminess and extreme weather are expected to increase as a 
result of climate change in the Prairie Provinces.96 Alberta was subject to six winter storm 
related disasters from 1900–2005, and an 8–15% increase in intense winter storms by 2050 is 
expected for the province. 

10.6	 British Columbia

British Columbia is home to the greatest variability in weather found in Canada. Prince 
Rupert is the wettest city in the country, while Ashcroft is the driest. Victoria has the mildest 
winter and the least snowfall, while Mount Fidelity has the most snowfall. Kamloops has 
the hottest summers, on average, while Fort Nelson has experienced the coldest weather in 
southern Canada. Kelowna is the least windy city in the country, while Cape Saint James has 
experienced some of the strongest winds recorded in Canada.

The 2003 Okanagan Mountain Park wildfire was the largest loss event in British Columbia, 
as measured by homes destroyed and damage claims paid by insurance companies: 27,000 
people were forced to evacuate their homes and businesses, the largest evacuation in the 
province’s history; 239 properties were destroyed; and insurance companies paid more than 
$210M in damage claims (adjusted for inflation). After Slave Lake, Alberta, this is the most 
damaging wildfire to have occurred in Canada.

The province has also experienced a number of damaging wind and severe rainfall events. 
(See Table 7.) The most severe, in terms of property damage, was in 2006 when a large storm 
resulted in extensive damage across British Columbia, Washington and Oregon. There had 
been a number of rainfall events over the previous month, so the region was particularly 
vulnerable when strong winds and heavy rainfall struck. The most visible damages from the 
storm were 1,000 trees felled in Stanley Park and extensive damage to trees around the Lower 
Mainland. Canada’s insurers paid over $142M in damage claims (adjusted for inflation),97 
while insurers in the United States paid a further $220M.98 Millions of dollars were also spent 
to rebuild infrastructure and parks. After the storm, more than 250,000 homes and businesses 
in British Columbia were without power.99 
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Date Location Event

Insured losses 
(adjusted for 

inflation 2010 $M)

2003 Summer BC Forest fires 226.7

2006 Nov. 15–Dec. 15 BC Storm 142.1

2008 Dec. BC Winter storm 61.3

2001 Dec. 14 Southwestern BC Windstorm 32.2

2007 Jan. 5 BC Storm 17.0

Table 7. The five most costly insured-loss weather-related events in British Columbia in the period 1983 through 2011.100

There has been significant warming across the province over the past 50 or 60 years, with the 
temperature rising by 1ºC to 1.5ºC since 1950. As shown in Figure 20, the number of days 
with temperatures over 25°C has increased in Vancouver from 1980 to 2010. 

Figure 20. Observed trends of hot summer days in Vancouver.

Warming was greatest in the southern interior, moderate in the northern interior, and least 
in coastal communities. Warming across the province was greatest in the spring and least in 
the fall, and was greater in terms of reductions in evening low temperatures than in terms of 
increases in daytime high temperatures. 

Looking ahead to 2050, this warming is expected to accelerate, at a rate almost twice that of 
the past 50 or 60 years – warming by a further 1.5ºC on average over the period. Although 
British Columbia should continue to experience a wide range of weather, most of the province 
is likely to be warmer and wetter. The snowpack in the mountains is expected to decline, 
disappearing in some locations, with important consequences for those dependent on these 
snows for a source of water. The frequency and severity of wildfires may also increase. 

Since 1950 there has been a 20–30% increase in rainfall in coastal British Columbia, a 5–10% 
increase in the northern interior, and an annual change in rainfall of –10% to +25% in the 
southern interior. The large variation in these projections is due in part to the potential for 
large spatial variation that can occur in mountainous regions and interior plateaus. A 5–10% 
increase in precipitation is expected over the period through 2050, with the largest increase 
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occurring in coastal areas and the northern interior. Increased precipitation is expected across 
the province in the winter, but rainfall should decrease in the summer, particularly in the 
southern interior. There is high confidence that there will be a 10–15% increase in intense 
rainfall events.

The incidence of severe wildfires are expected to increase significantly throughout BC’s 
forests, perhaps increasing by 50% or more over the period through 2050. There is high 
confidence in this forecast.

Tornadoes are possible but rare in British Columbia. Only five tornadoes have been 
reported since 1900. Each was weak, at a likely magnitude F0 or perhaps F1, and resulted 
in little damage. There has never been hurricane damage in British Columbia. Cool ocean 
waters prevent Pacific storms from building into hurricanes, and Atlantic hurricanes that 
bring intense rainfall into the continent never extend as far as British Columbia. While the 
province does not experience damaging tornadoes and hurricanes, British Columbia does 
experience damaging wind events, such as the 2006 storm (see Table 7 above). There is little 
research to anticipate whether the risk of damaging winds is changing in British Columbia as 
temperatures are rising.

10.7	 The North

For this report, the North is defined as the vast region of Canada that includes the Yukon, 
the Northwest Territories and Nunavut. The North has experienced the greatest warming 
in Canada over the past 40 or 50 years; indeed, its warming has been among the greatest in 
the world. This trend is expected to accelerate through 2050. The North also appears to have 
experienced the greatest increase in precipitation in Canada, particularly winter snowfall. 
Significant further increases in snowfall and rain are anticipated. Moreover, there has been a 
dramatic decline in sea ice cover, as well as increasing coastal erosion in many areas. 

There is considerable variation in climate conditions across Canada’s North. Summers are 
cool and brief, influenced by ice-filled polar waters. Winters are cold and long. Nunavut is 
mostly Arctic tundra, and can be subject to strong winds. In contrast, most of the Yukon and 
the Northwest Territories is covered in forest, with the forest density greatest in the southern 
parts, making wildfires a risk throughout the region. Several of Canada’s largest fires have 
been in the North.

There are few weather stations in the North. Accordingly, there is relatively little regional data 
measuring weather history. In particular, there is little data recording climate extremes. The 
weather station in Iqaluit, Nunavut, provides some limited information about the increase in 
extreme weather events in the North. For example, there have been 99 days over the past 35 
years when the temperature was above 25°C, and almost 60% of these were in the past decade. 
An even greater percentage difference was reported in the decline in the number of very cold 
days, when the temperature fell below –40°C (Figures 21 and 22).
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Figure 21. Trends in hot summer days in 
Iqaluit.

Figure 22. Trends in extreme cold on winter 
days in Iqaluit.

Temperatures are expected to increase by 2°C to 4°C through 2050. This is among the fastest 
rates of warming in the world. The warming in the autumn and winter is expected to be 2°C 
greater than during the summer, and is expected to follow a similar pattern across the Yukon, 
the Northwest Territories and Nunavut. By 2050, the likelihood of the temperature in Iqaluit 
exceeding 25°C could be five times greater than during the 1980s.

Precipitation in the North is projected to increase by 10–25% through 2050, with the largest 
increases happening in the winter. In northern areas of the North, a significant increase in 
winter snowfall of up to 40% is expected. In southern areas, there may be an increase in rain 
events relative to the increase in snow events. The limited data available that track the number 
of thunderstorm, hail and intense precipitation events include few observations and no 
statistically significant trends.

The number and severity of wildfires increased in the Yukon and the Northwest Territories 
over the past few decades and should rise further. This is because the fire season will likely 
lengthen by 10 days by 2050, increasing the frequency of evacuations and the risk of property 
destruction. 

Across Nunavut and the Yukon, sea levels have been rising at an average rate of 3.2 cm per 
decade. By 2050, sea levels could be 15–25 cm higher. Rising sea level and reduced ice cover 
have increased the rate of coastal erosion in the North.
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11.	 Conclusion

Based on the analyses conducted by the Intergovernmental Panel on Climate Change, 
the global climate is warming. Canada’s climate is also warming, with winters generally 
warming more than summers. Recent trends in Canada have seen an increase in property 
claims resulting from extreme weather-related events. For the next two decades, a global 
warming rate of about 0.2°C per decade is projected, with a faster rate of warming in 
Canada, particularly in the North averaged over the year. In the winter, northern Canada will 
warm more than the southern parts, and in the summer, the opposite will be true. Average 
precipitation will increase over all of Canada in the winter. In the summer, there will be 
reductions in precipitation in the south over western Canada, and precipitation will remain 
about the same in eastern Canada. 

Of major concern are the projections of increases in both hot days and heavy precipitation 
events. The projected return periods for the maximum daily temperature that previously was 
exceeded on average once during a 20-year period in the late 20th century (1981–2000) will 
decrease, implying that hot days will happen more frequently. For much of Canada, the recent 
once-in-20-years hot day will by mid-century be occurring every three to five years. For 
precipitation events, the daily precipitation event that was exceeded in the late 20th century 
on average once during a 20-year period will by mid-century be occurring about every 10 
to 12 years – almost twice as often. Winds in winter larger-scale storms will also increase. 
Because of their small scale, it is not possible to project with confidence changes in tornado 
occurrences, but a risk analysis perspective indicates that a policy based on assumptions of 
more tornadoes is appropriate.

With the warming and changes in heavy precipitation events, presumably associated with 
lightning, increases in wildland fires are projected, reaching over 100% in northwestern 
Ontario by 2030. 

On Canada’s coasts, increasing sea level rise will make the impacts of storms and associated 
storm surges more dangerous.

This report has looked at the variations of these past and projected affects across Canada and 
raises overall concerns about the needs for strategies to reduce vulnerability and exposure in 
view of the increasing risks of more extreme hazards.



June 2012                     Telling the Weather Story   |   54 

Appendix: Glossary of Terminology

Adaptation
Adaptation refers to initiatives and measures to reduce the vulnerability of natural and 
human systems against actual or expected climate change effects. Various types of adaptation 
exist, e.g., anticipatory and reactive, private and public, and autonomous and planned. 
Examples are raising river or coastal dikes, and the substitution of more temperature-shock 
resistant plants for sensitive ones.

Adaptation benefits
Adaptation benefits refer to the damage costs avoided or the benefits accrued following the 
adoption and implementation of adaptation measures.

Adaptation costs
Adaptation costs refer to the costs of planning, preparing for, facilitating and implementing 
adaptation measures, including transition costs.

Anthropogenic
This word describes things that result from or are produced by human beings.

Atmosphere
The atmosphere is the gaseous envelope surrounding the Earth. The dry atmosphere consists 
almost entirely of nitrogen (78.1% of the volume) and oxygen (20.9%), together with a 
number of trace gases, such as argon (0.93%), helium and radiatively active greenhouse gases 
such as carbon dioxide (0.039%, which corresponds to 390 parts per million) and ozone. In 
addition, the atmosphere contains greenhouse gas water vapour, whose amounts are highly 
variable but typically present around 1% of volume. The maximum amount of water vapour 
that the atmosphere can hold, corresponding to 100% relative humidity, depends strongly on 
its temperature – warm air can hold more water vapour. The atmosphere also contains clouds 
(water in its liquid phase) and aerosols.

Carbon dioxide (CO2)
Carbon dioxide is a naturally occurring gas fixed by photosynthesis into organic matter. A 
by-product of fossil fuel combustion and biomass burning, it is also emitted from land-use 
changes and other industrial processes. It is the principal anthropogenic greenhouse gas that 
affects the Earth’s radiative balance. It is the reference gas against which other greenhouse 
gases are measured.
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Climate 
Climate in a narrow sense is usually defined as the average weather, or more rigorously, as 
the statistical description in terms of the mean and variability of relevant quantities over a 
period of time ranging from months to thousands or millions of years. The classical period for 
averaging these variables is 30 years, as defined by the World Meteorological Organization. 
The relevant quantities are most often surface variables such as temperature, precipitation 
and wind. Climate in a wider sense is the state of the climate system, including a statistical 
description. 

Climate change
(a) �The Intergovernmental Panel on Climate Change (IPCC) defines climate change as “a 

change in the state of the climate that can be identified (e.g., by using statistical tests) 
by changes in the mean and/or the variability of its properties, and that persists for an 
extended period, typically decades or longer. Climate change may be due to natural 
internal processes or external forcings or to persistent anthropogenic changes in the 
composition of the atmosphere or in land use.”

(b) �The United Nations Framework Convention on Climate Change (UNFCCC) defines 
climate change as “a change of climate which is attributed directly or indirectly to human 
activity that alters the composition of the global atmosphere and which is in addition to 
natural climate variability observed over comparable time periods.”

Climate change commitment
Due to the thermal inertia of the ocean and slow processes in the biosphere, the cryosphere 
and land surfaces, the climate would continue to change even if the atmospheric composition 
was held fixed at today’s values. Past change in atmospheric composition leads to a 
“committed” climate change, which continues for as long as a radiative imbalance persists and 
until all components of the climate system have adjusted to a new state. The further change 
in temperature after the composition of the atmosphere is held constant is referred to as the 
committed warming or warming commitment. Climate change commitment brings other 
future changes, for example in the hydrological cycle, in extreme weather events and in sea 
level rise.

Climate (change) scenario
A plausible and often simplified representation of the future climate, based on an internally 
consistent set of climatological relationships and assumptions of radiative forcing, typically 
constructed for explicit use as input to climate change impact models. 
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Climate isotherms 
Isotherms refer to boundary lines placed on a map to delineate between geographic areas that 
share average yearly temperatures. Climate isotherms provide the same function as contour 
lines on an elevation map. A poleward shift in mean climate isotherms means that northerly 
areas will experience warmer average temperatures that are normally associated with more 
southerly areas.

Climate model
A numerical representation of the climate system based on the physical, chemical and 
biological properties of its components, their interactions and feedback processes, and 
accounting for all or some of its known properties. The climate system can be represented by 
models of varying complexity (i.e., for any one component or combination of components, 
a hierarchy of models can be identified, differing in such aspects as the number of spatial 
dimensions, the extent to which physical, chemical or biological processes are explicitly 
represented, or the level at which empirical parameterisations are involved. Coupled 
atmosphere/ocean/sea-ice general circulation models (AOGCMs) provide a comprehensive 
representation of the climate system.

More complex models include active chemistry and biology. Climate models are applied, as a 
research tool, to study and simulate the climate, but also for operational purposes, including 
monthly, seasonal and interannual climate predictions.

Climate prediction
A climate prediction or climate forecast is the result of an attempt to produce an estimate of 
the actual evolution of the climate in the future, e.g., at seasonal, interannual or long-term 
time scales. See also climate projection and climate (change) scenario.

Climate projection
A climate projection is the calculated response of the climate system to emissions or 
concentration scenarios of greenhouse gases and aerosols, or radiative forcing scenarios, 
often based on simulations by climate models. Climate projections are distinguished from 
climate predictions in that the former critically depend on the emissions/concentration/
radiative forcing scenario used, and therefore on highly uncertain assumptions of future 
socio-economic and technological development. Climate predictions do not rely on models of 
future changes as contributing factors but rather are most influenced by the initial conditions. 
For example, a weather prediction that tomorrow will be stormy is based on the state of the 
atmosphere today and/or in the recent past.

Climate sensitivity
Climate sensitivity describes the equilibrium temperature rise that would occur for a doubling 
of carbon dioxide concentration above pre-industrial levels.
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Climate system
The climate system is defined by the dynamics and interactions of five major components: 
atmosphere, hydrosphere, cryosphere, land surface and biosphere. Climate system dynamics 
are driven by both internal and external forcing, such as volcanic eruptions, solar variations 
or human-induced modifications to the planetary radiative balance, for instance via 
anthropogenic emissions of greenhouse gases and land-use changes.

Climate threshold
The point at which external forcing of the climate system, such as the increasing atmospheric 
concentration of greenhouse gases, triggers a significant climatic or environmental event that 
is considered unalterable or recoverable only on very long time-scales, such as widespread 
bleaching of corals or a collapse of oceanic circulation systems.

Climate variability
Climate variability refers to variations in the mean state and other statistics (such as standard 
deviations, statistics of extremes, etc.) of the climate on all temporal and spatial scales beyond 
that of individual weather events. Variability may be due to natural internal processes within 
the climate system (internal variability) or to variations in natural or anthropogenic external 
forcing (external variability). See also climate change.

Confidence
The level of confidence in the correctness of a result is expressed in the 2007 IPCC report, 
using a standard terminology defined as follows:

TERMINOLOGY DEGREE OF CONFIDENCE IN BEING CORRECT

Very high confidence At least 9 out of 10 chance of being correct
High confidence About 8 out of 10 chance
Medium confidence About 5 out of 10 chance
Low confidence About 2 out of 10 chance
Very low confidence Less than 1 out of 10 chance

Disaster
A serious disruption of the functioning of a community or a society involving widespread 
human, material, economic or environmental losses and impacts, that exceeds the ability 
of the affected community or society to cope using its own resources. Disasters occur when 
hazards and vulnerabilities interact. 

Drought
The phenomenon that exists when precipitation is significantly below normal recorded 
levels, causing serious hydrological imbalances that often adversely affect land resources and 
production systems.
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Emissions scenario
An emissions scenario is a plausible representation of the future development of emissions 
of substances that are potentially radiatively active (e.g., greenhouse gases, aerosols), based 
on a coherent and internally consistent set of assumptions about driving forces (such 
as demographic and socio-economic development, technological change) and their key 
relationships. Four emissions scenario “family storylines” set out distinct directions for 
global development through the year 2100. The storylines and associated population, GDP 
and emissions scenarios – associated with the Special Report on Emissions Scenarios (SRES) 
– were developed by the IPCC to assist in climate change projections. Illustrations and key 
themes of the four family storylines are provided below.

A1: �Rapid, globalized economic development; global population rising and peaking mid-
century and subsequently declining; rapid introduction of new and more efficient 
technologies. Key themes: global, economic development.

A2: �Slower, regionally oriented economic development; continuously growing global 
population; slower per capita economic growth and technological change than in the 
other storylines. Key themes: regional, economic development.

B1: �Same population scenario as in A1, but with a rapid shift toward service and information 
economies; reduced material consumption complimented with introduction of clean 
and resource efficient technologies; global emphasis on solutions to economic, social and 
environmental sustainability. Key themes: global, sustainable development.

B2: �Continually increasing population, at a lower rate than A2; less rapid economic and 
technological development than in A1 and B1; emphasis on regional/local solutions to 
economic, social and environmental sustainability. Key themes: Regional, sustainable 
development.

Exposure 
Exposure refers to the people, property, systems or other elements present in hazard zones 
that are thereby subject to potential losses.

Extreme weather event 
An extreme weather event is an event that is rare at a particular place and time of year. 
Definitions of rare vary, but an extreme weather event would normally have less than a 1 in 
10 chance of occurring. By definition, the characteristics of what is called extreme weather 
may vary from place to place in an absolute sense. Single extreme events cannot be simply 
and directly attributed to anthropogenic climate change, as there is always a finite chance the 
event in question might have occurred naturally. When a pattern of extreme weather persists 
for some time, such as a season, it may be classed as an extreme climate event, especially if it 
yields an average or total that is itself extreme (e.g., drought or heavy rainfall over a season).
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Feedback
An interaction mechanism between processes in the climate system is called a climate 
feedback when the result of an initial process triggers changes in a second process that in turn 
influences the initial one. A positive feedback intensifies the original process, and a negative 
feedback reduces it. An example of a positive feedback process is melting sea ice, where 
climate change (first process) causes sea ice melt (second process) and sea ice melt intensifies 
climate change, due to loss of the ability of the sea to reflect a portion of the sun’s energy back 
into space.

Fujita Tornado Scale

Rating Event type

Maximum 
wind 
speed 
(km/h) Type of damage done

F0 Gale tornado 64–116 Some damage to chimneys; breaks branches 
off trees; pushes over shallow-rooted trees; 
damages sign boards.

F1 Moderate tornado 117–180 The lower limit is the beginning of hurricane 
wind speed; peels surface off roofs; mobile 
homes pushed off foundations or overturned; 
moving autos pushed off the roads; attached 
garages may be destroyed.

F2 Significant tornado 181–252 Roofs torn off frame houses; mobile homes 
demolished; boxcars pushed over; large trees 
snapped or uprooted; light object missiles 
generated.

F3 Severe tornado 253–330 Roofs and some walls torn off well-constructed 
houses; trains overturned; most trees in forest 
uprooted.

F4 Devastating tornado 331–417 Well-constructed houses levelled; structures 
with weak foundations blown off some distance; 
cars thrown and large missiles generated.

F5 Incredible tornado 418–509 Strong frame houses lifted off foundations and 
carried considerable distances to disintegrate; 
automobile-sized missiles fly through the air 
in excess of 100 metres; trees debarked; steel 
reinforced concrete structures badly damaged.

Greenhouse effect
Greenhouse gases effectively absorb infrared radiation emitted by the Earth’s surface, by the 
atmosphere itself due to the same gases and by clouds. Atmospheric radiation is emitted 
to all sides, including downward to the Earth’s surface. Thus, greenhouse gases trap heat 
within the surface-troposphere system. This is called the greenhouse effect. Thermal infrared 
radiation in the troposphere is strongly coupled to the temperature at the altitude at which it 
is emitted. In the troposphere, the temperature generally decreases with height. Effectively, 
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infrared radiation emitted to space originates from an altitude with a temperature of, on 
average, –19°C, in balance with the net incoming solar radiation, whereas the Earth’s surface 
is kept at a much higher temperature of, on average, +14°C. An increase in the concentration 
of greenhouse gases leads to an increased infrared opacity of the atmosphere and therefore 
to an effective radiation into space from a higher altitude at a lower temperature. This causes 
a radiative forcing that leads to an enhancement of the greenhouse effect, the so-called 
enhanced greenhouse effect.

Greenhouse gases
Greenhouse gases are those gaseous constituents of the atmosphere, both natural and 
anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of 
thermal infrared radiation emitted by the Earth’s surface, the atmosphere itself, and by clouds. 
This property causes the greenhouse effect. The main greenhouse gases are water vapour, 
carbon dioxide, nitrous oxide, methane and ozone. 

Gross Domestic Product
Gross Domestic Product (GDP) is the monetary value of all goods and services produced 
within a nation.

Hazard
A hazard is an event or phenomenon that has the potential to cause loss of life or injury, 
damage to property, social and economic disruption, or environmental degradation. Hazards 
may include windstorms, tornadoes, floods and heavy rainfall events. 

Hydrographic events
Hydrographic events alter the state or current of waters in oceans, rivers or lakes.

Hydrological systems 
These are the systems involved in movement, distribution and quality of water throughout the 
Earth, including both the hydrologic cycle and water resources.

IPCC
The Intergovernmental Panel on Climate Change (IPCC) was established by the United 
Nations Environment Program (UNEP) in 1988 and is responsible for assessing and 
compiling the most recent and best scientific research on climate change. The IPCC is 
considered the world authority on climate change information and periodically releases 
comprehensive change reports, which are used as the basis for climate change policy making 
worldwide. In 2007, the IPCC was jointly awarded the Nobel Peace Prize with Al Gore “for 
their efforts to build up and disseminate greater knowledge about man-made climate change, 
and to lay the foundations for the measures that are needed to counteract such change.” 
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Likelihood
The likelihood of an occurrence, an outcome or a result, where this can be estimated 
probabilistically, is expressed in IPCC reports using a standard terminology defined as 
follows:

TERMINOLOGY Likelihood of the occurrence/outcome

Virtually certain >99% probability of occurrence
Very likely >90% probability

Likely >66% probability
More likely than not >50% probability

About as likely as not 33 to 66% probability
Unlikely <33% probability

Very unlikely <10% probability
Exceptionally unlikely <1% probability

Methane (CH4)
Methane is one of the six greenhouse gases to be mitigated under the Kyoto Protocol and 
is the major component of natural gas and associated with all hydrocarbon fuels, animal 
husbandry and agriculture. Coal-bed methane is the gas found in coal seams.

Permafrost
Perennially frozen ground that occurs where the temperature remains below 0°C for several 
years.

Return Period 
A return period is the average time between occurrences of a defined event. The return value 
is the highest (or, alternatively, lowest) value of a given variable, on average occurring once in 
a given period of time (e.g., in 10 years).

Scenario
A plausible and often simplified description of how the future may develop, based on 
a coherent and internally consistent set of assumptions about driving forces and key 
relationships. Scenarios may be derived from projections, but are often based on additional 
information from other sources, sometimes combined with a “narrative storyline.” See also 
climate (change) scenario and emissions scenario.

Sea level rise
An increase in the mean level of the ocean. Eustatic sea level rise is a change in global average 
sea level brought about by an increase in the volume of the world ocean. Relative sea level rise 
occurs where there is a local increase in the level of the ocean relative to the land, which might 
be due to ocean rise and/or land level subsidence. In areas subject to rapid land-level uplift, 
relative sea level can fall.
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Sensitivity
Sensitivity is the degree to which a system is affected, either adversely or beneficially, by 
climate variability or change. The effect may be direct (e.g., a change in crop yield in response 
to a change in the mean, range or variability of temperature) or indirect (e.g., damages caused 
by an increase in the frequency of coastal flooding due to sea level rise).

Snowpack
A seasonal accumulation of slow-melting snow.

Threshold
The level of magnitude of a system process at which sudden or rapid change occurs. A 
point or level at which new properties emerge in an ecological, economic or other system, 
invalidating predictions based on mathematical relationships that apply at lower levels.

Uncertainty
An expression of the degree to which a value (e.g., the future state of the climate system) is 
unknown. Uncertainty can result from lack of information or from disagreement about what 
is known or even knowable. It may have many types of sources, from quantifiable errors in 
the data to ambiguously defined concepts or terminology, or uncertain projections of human 
behaviour.

Uncertainty can therefore be represented by quantitative measures (e.g., a range of values 
calculated by various models) or by qualitative statements (e.g., reflecting the judgement of a 
team of experts). See also confidence and likelihood.

Vulnerability
Vulnerability is the degree to which a system is susceptible to, and unable to cope with, 
adverse effects of climate change, including climate variability and extremes. Vulnerability is 
a function of the character, magnitude and rate of climate change and variation to which a 
system is exposed, its sensitivity and its adaptive capacity.

For example, a flooded river, per se, is not a disaster. However, a disaster occurs when a flood 
interacts with a vulnerable system, such as an exposed community located in a flood plain. 

Weather
Weather includes short-term changes in the atmosphere, and can change over very short 
periods of time. Weather can change from minute to minute, day to day and month to month.



June 2012                     Telling the Weather Story   |   63 

Endnotes

1 Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. 
Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T. 
Matsuno, M. Molina, N. Nicholls, J. Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, 
T.F. Stocker, P. Whetton, R.A. Wood and D. Wratt, 2007: Technical Summary. In: Climate Change 2007: 
The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. 
Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, 
USA. (Hereafter: Solomon et al., 2007.)

2 Intergovernmental Panel on Climate Change (IPCC), 2012: Special Report: Managing the Risks of Extreme 
Events and Disasters to Advance Climate Change Adaptation (SREX). Accessed online at http://ipcc-wg2.
gov/SREX/. (Hereafter: IPCC SREX, 2012.)

3 Bruce, J.P., 2011: Climate Change Information for Adaptation: Climate Trends and Projected Values for Canada 
from 2010 to 2050. ICLR Report. Accessed online at http://www.iclr.org/images/Bruce_climate_change_
info_march_2011.pdf. (Hereafter: Bruce, 2011.)

4 The Institute for Catastrophic Loss Reduction (ICLR) is a world-class centre for multi-disciplinary disaster 
prevention research and communications. ICLR was established by Canada’s property and casualty 
insurance industry as an independent, not-for-profit research institute affiliated with the University of 
Western Ontario. Institute staff and research associates are international leaders in wind and seismic 
engineering, atmospheric science, risk perception, hydrology, economics, geography, health sciences, public 
policy and a number of other disciplines.

5 See Appendix A, Glossary, for the definition of “scenario.”

6 Solomon et al., 2007.

7 Solomon et al., 2007.

8 World Meteorological Organization, January 20, 2011: 2010 Equals Record for World’s Warmest Year.  
See also Aon Benfield, 2010: Annual Global Climate and Catastrophe Report, p.7.

9 Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, 
J.A. Renwick, M. Rusticucci, B. Soden and P. Zhai, 2007: Observations: Surface and Atmospheric Climate 
Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. 
Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, 
UK, and New York, NY, USA, Figure 1, p. 253. (Hereafter: Trenberth et al., 2007.)

10 Lemmen, D.S., F.J. Warren, J. Lacroix and E. Bush (eds.) 2008: In From Impacts to Adaptation: Canada in a 
Changing Climate 2007. Government of Canada, Ottawa, Ontario, pp. 44–45.  
(Hereafter: Lemmen et al., 2008).

11 Environment Canada, January 10, 2011: Climate Trends and Variations Bulletin – Annual 2010.  
(Hereafter: Environment Canada, 2011.)

12 Environment Canada, 2011.

13 Environment Canada, 2011.

14 Environment Canada, 2003: 20th Century Trends in the Earth’s Climate and Bio-physical System. Environment 
Canada, Science of Climate Change.



June 2012                     Telling the Weather Story   |   64 

15 Environment Canada, 2011.

16 United Nations International Strategy for Disaster Reduction (UNISDR): Terminology on Disaster Risk 
Reduction (working document), updated March 12, 2003. Accessed online at http://www.adrc.asia/
publications/terminology/top.htm.

17 Munich Re, January 3, 2011: Overall Picture of Natural Catastrophes in 2010 – Very Severe Earthquakes and 
Many Severe Weather Events. Accessed online at http://www.munichre.com/en/media_relations/press_
releases/2011/2011_01_03_press_release.aspx.

18 Munich Re: TOPICS GEO Natural Catastrophes 2010: Analyses, Assessments, Positions. Munich Re Report 
302-06742_en. 

19 Lemmen et al., 2008, p. 47.

20 Environment Canada: Intensity-Duration-Frequency Tables and Graphs. 

21 Whalström M. (Assistant Secretary-General for Disaster Risk Reduction and Special Representative of the 
U.N. Secretary-General for the Implementation of the Hyogo Framework for Action) 2009. In: Addressing 
the Challenge: Recommendations and Quality Criteria for Linking Disaster Risk Reduction and Adaptation 
to Climate Change [Birkmann, J., G. Tetzlaff and K.O. Zentel (eds.)]. German Committee for Disaster 
Reduction (DKKV) Publication Series, 38:5.

22 Economics of Climate Adaptation, 2009: Shaping Climate-Resilient Development – A Framework for Decision 
Making, p. 20.

23 Leurig, S., September 2011: Climate Risk Disclosure by Insurers – Evaluating Insurer Responses to the NAIC 
Climate Disclosure Survey. A Ceres Report. 

24 PCS (Property Claim Services), November 23, 2010: Catastrophe Serial No. 23-4. Final Estimate. 

25 PCS, January 10, 2011: Catastrophe Serial No. 25-4. Final Estimate.

26 PCS, December 17, 2010: Catastrophe Serial No. 26-3. Final Estimate.

27 Based on an IBC survey of property and casualty insurers, representing Atlantic market share: 69% auto;  
74% personal property; and 50% commercial property market share.

28 PCS, November 22, 2011: Catastrophe Serial No. 31-3. Preliminary Estimate.

29 PCS, October 4, 2011: Catastrophe Serial No. 34. Preliminary Estimate.

30 Canadian Underwriter, March 9, 2011: Increase in Claims After Heavy Rainfall Hits Parts of Ontario and 
Quebec.

31 Most of the weather-related insurance losses for homeowners result from water damage due to sewer backup 
or wind/hail damage. Coverage for damage due to overland flooding is not available to homeowners in 
Canada. Commercial insurance policies may provide coverage for damage due to overland flooding either as 
part of the commercial property policy or as a separate policy endorsement. 

32 Solomon et al., 2007. 

33 Solomon et al., 2007.

34 Intergovernmental Panel on Climate Change, 2007: Climate Change 2007: Synthesis Report. Contribution of 
Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change [Core Writing Team, Pachauri, R.K and A. Reisinger (eds.)]. IPCC, Geneva, Switzerland, Section 
3.2.2.



June 2012                     Telling the Weather Story   |   65 

35 Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, R. 
Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez, J. Räisänen, A. Rinke, A. Sarr and P. Whetton, 2007: 
Regional Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working 
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., 
D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge 
University Press, Cambridge, UK, and New York, NY, USA, Figure 11.13.

36 Discontinuous permafrost is a form of permafrost where the mean temperature is at a level that allows some 
areas to remain frozen year-round while other parts of the landscape can thaw during the summer.

37 IPCC SREX, 2012.

38 Solomon et al., 2007. 

39 Solomon et al., 2007.

40 Solomon et al., 2007.

41 IPCC SREX, 2012.

42 IPCC SREX, 2012.

43 Mladjic, B., L. Sushama, M.N. Khaliq, R. Laprise, D. Caya and R. Roy, 2011: Canadian RCM Projected Changes 
to Extreme Precipitation Characteristics over Canada. Journal of Climate, 24, 2565–2584.

44 McInnes, K.L., T.A. Erwin and J.M. Bathols, 2011: Global Climate Model Projected Changes in 10 m Wind 
Speed and Direction Due to Anthropogenic Climate Change. Atmospheric Science Letters (in press, doi: 
10.1002/asl.1341). (Hereafter: McInnes, 2011.)

45 Etkin, D. (ed.) 2010: Canadians at Risk: Our Exposure to Natural Hazards. Canadian Assessment of Natural 
Hazards Project. ICLR Research Paper Series – Number 48. ISBN: 978-0-9784841-5-6. Accessed online at 
http://www.iclr.org. (Hereafter: Etkin, 2010.)

46 Etkin, 2010.

47 National Climatic Data Center: U.S. Tornado Climatology, updated February 2011. Accessed online at http://
www.ncdc.noaa.gov/oa/climate/severeweather/tornadoes.html#history.

48 IPCC SREX, 2012.

49 Trenberth et al., 2007.

50 Kunkel, K.E., P.D. Bromirski, H.E. Brooks, T. Cavazos, A.V. Douglas, D.R. Easterling, K.A. Emanual, P.Y. 
Groisman, G.J. Holland, T.R. Knutson, J.P. Kossin, P.D. Komar, D.H. Levinson and R.L. Smith, 2008: 
Observed Changes in Weather and Climate Extremes. In: Weather and Climate Extremes in a Changing 
Climate. Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. [Karl, T.R., G.A. 
Meehl, D.M. Christopher, S.J. Hassol, A.M. Waple and W.L. Murray (eds.)]. A Report by the U.S. Climate 
Change Science Program and the Subcommittee on Global Change Research, Washington, DC, USA, p. 222.

51 Diffenbaugh, N.S., R.J. Trapp and H. Brooks, 2008: Does Global Warming Influence Tornado Activity?  
Eos Transactions (AGU), 89 (53), 553.

52 Hoerling, M., 2011: Preliminary Assessment of Climate Factors Contributing to the Extreme 2011 Tornadoes. 
Draft Assessment, updated May 12, 2011. NOAA Report. Accessed online at http://www.esrl.noaa.gov/psd/
csi/events/2011/tornadoes/index.html.

53 McBean, G.A., 2005: Risk Mitigation Strategies for Tornadoes in the Context of Climate Change and 
Development. Mitigation and Adaptation Strategies for Global Change, 10: 357–366.



June 2012                     Telling the Weather Story   |   66 

54 AWotton, B.M., BC.A. Nock and CM.D. Flannigan, 2010: Forest Fire Occurrence and Climate Change in 
Canada. International Journal of Wildland Fire, 19, 253–271. (Hereafter: Wotton et al., 2010.) ACanadian 
Forest Service, Natural Resources Canada, Faculty of Forestry, University of Toronto, Toronto, Ontario, 
Canada. BInstitute of Botany, University of Natural Resources and Applied Life Sciences Vienna,1180 
Vienna, Austria. CCanadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada. 

55 University of Copenhagen, March 10–12, 2009. Synthesis Report from Climate Change, Global Risks, 
Challenges and Decisions, Copenhagen. Accessed online at www.climatecongress.ku.dk. (Hereafter: 
University of Copenhagen Synthesis Report, 2009.)

56 University of Copenhagen Synthesis Report, 2009. 

57 BC Ministry of Environment, January 27, 2011. Project No. 143111, Revision Number 0, Climate Change 
Adaption Guidelines for Sea Dikes and Coastal Flood Hazard Land Use, Draft Policy Discussion Paper.

58 Public Safety Canada: Canadian Disaster Database. Accessed online at http://www.publicsafety.gc.ca/prg/em/
cdd/index-eng.aspx.

59 Insurance Bureau of Canada: Facts Book 2009. Based on PCS Data. (Hereafter: IBC, 2009, PCS-Canada.)

60 Solomon et al., 2007.

61 Bruce, 2011.

62 IBC, 2009, PCS-Canada.

63 IBC, 2009, PCS-Canada.

64 Cheng, S. C., G. Li, Q. Li and H. Auld, 2011: A Synoptic Weather-Typing Approach to Project Future Daily 
Rainfall and Extremes at Local Scale in Ontario, Canada. Journal of Climate, 24, 3667–3685.

65 Cao, Z., 2008: Severe Hail Frequency Over Ontario, Canada: Recent Trend and Variability. Geophysical 
Research Letters, 35, L14803, doi:10.1029/2008GL034888. (Hereafter: Cao, 2008.)

66 Cheng, C.S., G. Li and H. Auld, 2011: Possible Impacts of Climate Change on Freezing Rain Using Downscaled 
Future Climate Scenarios: Updated for Eastern Canada. Atmosphere-Ocean, 49:1, 8–21.

67 McInnes, 2011.

68 IBC, 2009, PCS-Canada.

69 Sauchyn, D. and S. Kulshreshtha, 2008: Prairies. In From Impacts to Adaptation: Canada in a Changing Climate, 
2007 ([D. Lemmen, F.Warren, J. Lacroix and E. Bush (eds.)].Government of Canada, Ottawa, Ontario. 
(Hereafter: Sauchyn and Kulshreshtha, 2008.)

70 Sauchyn and Kulshreshtha, 2008.

71 Public Safety Canada: Canadian Disaster Database, 2007. 

72 Sauchyn and Kulshreshtha, 2008.

73 Wotton et al, 2010.

74 Environment Canada, September 2007: Elie Tornado Upgraded to Highest Level on Damage Scale, Canada’s 
First Official F5 Tornado. Accessed online at http://www.ec.gc.ca/default.asp?lang=En&n=714D9AAE-
1&news=4B3DE57E-4967-4B09-98D6-EF974B32D6B5.

75 The Canadian Press, July 2010: Saskatchewan Tornado Stronger Than Thought. Accessed online athttp://www.
cbc.ca/news/canada/saskatchewan/story/2010/07/04/sask-tornado-reserve-stronger.html; Public Safety 
Canada: Canadian Disaster Database, 2011.



June 2012                     Telling the Weather Story   |   67 

76 McCarthy, D. and J. Schaefer, 2004: Tornado Trends Over the Past Thirty Years. NOAA/NWS/NCEP/
Storm Prediction Center, Norman, Oklahoma, USA. Paper Presented at the 14th Conference on Applied 
Climatology, Seattle, Washington, USA. American Meteorological Society. (Hereafter: McCarthy and 
Schaefer, 2004.)

77 Cao, 2008.

78 Lesliea, L. et al., 2008: Estimating Future Trends in Severe Hailstorms Over the Sydney Basin: A Climate 
Modeling Study. Atmospheric Research, 87, 37–51. (Hereafter: Lesliea et al., 2008.)

79 Etkin, D. and S.E. Brun, 2001: Canada’s Hail Climatology: 1977–1993. ICLR Research Paper Series - Number 
14. Accessed online at http://www.iclr.org. (Hereafter: Etkin and Brun, 2001.)

80 IBC, 2009, PCS-Canada.

81 CBC News Online, August 2004: Drought of 2002. Accessed online at http://www.cbc.ca/news/background/
agriculture/drought2002.html.

82 Public Safety Canada: Canadian Disaster Database, 2011.

83 Sauchyn and Kulshreshtha, 2008 .

84 Sauchyn and Kulshreshtha, 2008. 

85 Insurance Bureau of Canada, 2000 and 2008: Facts of the General Insurance Industry, 2000; 2008.  
(Hereafter: IBC, 2000, 2008.)

86 IBC, 2000, 2008. 

87 Etkin and Brun, 2001.

88 Cao, 2008.

89 Lesliea et al., 2008.

90 Cao, 2008.

91 Lemmen et al., 2008; Wotton, B. and M. Flannigan, 1993: Length of the Fire Season in a Changing Climate. 
Forestry Chronicle, 69,187–192.

92 Blanchard-Boehm, D. and M. Cook, 2004: Risk Communication and Public Education in Edmonton, Alberta, 
Canada on the 10th Anniversary of the “Black Friday” Tornado. International Research in Geographical and 
Environmental Education, 13. (Hereafter: Blanchard-Boehm and Cook, 2004.)

93 Blanchard-Boehm and Cook, 2004.

94 Public Safety Canada: Canadian Disaster Database, 2011.

95 McCarthy and Schaefer, 2004.

96 Sauchyn and Kulshreshtha, 2008.

97 IBC, 2009, PCS-Canada.

98 Seattle Times, January 2007: Windstorm Insurance Claims $220 Million Total. Accessed online at http://
community.seattletimes.nwsource.com/archive/?date=20070110&slug=bizbriefs10.

99 CTV News Online, December 2006: B.C. Reels After Third Major Storm Knocks Out Power. Accessed online 
at http://www.ctv.ca/CTVNews/TopStories/20061214/high_winds_061215/.

100 IBC, 2009, PCS-Canada.





© 2012 Insurance Bureau of Canada. All rights reserved.
The information provided in this brochure is intended for educational and 
informational purposes only. Please consult the appropriate qualified professional 
to determine if this information is applicable to your circumstances.

01/12

Insurance Bureau of Canada is the national trade association 
for Canada’s private home, car and business insurers.

Questions about insurance? 

Call us.

British Columbia, Saskatchewan and Manitoba
Toll-free: 1-877-772-3777 ext. 222 
Hours: M-F 9:00 a.m. – 4:00 p.m.

Alberta and the North 
Toll-free: 1-800-377-6378 
Hours: M-F 8:30 a.m. – 4:00 p.m.

Ontario 
Toll-free: 1-800-387-2880
Hours: M-F 8:00 a.m. – 5:00 p.m.

Quebec 
Toll-free: 1-877-288-4321
Hours: M-F 8:30 a.m. – 4:30 p.m.

Atlantic 
Toll-free: 1-800-565-7189 ext. 227 
Hours: M-F 8:30 a.m. – 4:30 p.m.

www.ibc.ca
www.getintheknow.ibc.ca

         @InsuranceBureau

          youtube.com/user/insurancebureau


